Review
BibTex RIS Cite

Application of Models to Eutrophication in Lakes

Year 2022, , 188 - 198, 29.12.2022
https://doi.org/10.46384/jmsf.1181257

Abstract

One of the phenomena that causes ecological concerns is lake eutrophication. Lakes are under the threat of water quality degradation and ecological imbalance due to increased anthropogenic activity, particularly in developing countries. In this context, limnologists and environmental scientists have been using numerical modeling in their studies of aquatic ecosystems over the last few decades. Ecological models use ecosystem-process interactions to simulate future management scenarios and evaluate the system's response to eutrophication. Utilizing ecological models has made it simpler than ever to estimate and manage lake eutrophication. However, due to lake-specific issues, the models are becoming increasingly detailed. In this review ; a) The model types used in eutrophication-focused modelling studies were summarized b) Model utilizations based on different eutrophication elements and events were highlighted via several recent national and international studies.

References

  • Ahlgren, I., Frisk, T., & Kamp-Nielsen, K. (1988). Empirical and theoretical models of phosphorus loading, retention and concentration vs. lake trophic state. Hydrobiologia, 170, 285-303. doi: 10.1007/BF00024910
  • Altunkaynak, D., & Şen, Z. (2007). Fuzzy logic model of lake water level fluctuations in Lake Van, Turkey. Theoratical and Applied Climatology, 90, 227–233. doi:10.1007/s00704-006-0267-z
  • Anagnostou, E., Gianni, A., & Zacharias, I. (2017). Ecological modeling and eutrophication-a review. Natural Resource Modeling, 30, 2130. doi.org/10.1111/nrm.12130
  • Anonim (2013). Yedi Renkli Göle Yedi Renkli Hayat Projesi – 2013 ©WWF-Türkiye (Doğal Hayatı Koruma Vakfı), İstanbul, Türkiye. 36 s.
  • Antonopoulos, V., & Gianniou, S. K. (2003). Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecological Modelling, 160, 39-53. doi: 10.1016/S0304-3800(02)00286-7
  • Arhonditsis, G.B., & Brett, M.T. (2005a). Eutrophication model for Lake Washington (USA). Part I. Model description and sensitivity analysis. Ecological Modelling, 187, 140–178. doi:10.1016/j.ecolmodel.2005.01.040
  • Arhonditsis, G.B., & Brett, M.T. (2005b). Eutrophication model for Lake Washington (USA) Part II—Model calibration and system dynamics analysis. Ecological Modelling, 187, 179-200. doi:10.1016/j.ecolmodel.2005.01.039
  • Bahadır, M., & Özdemir, M.A. (2011). Climate trend analysis of the level changes of Iznik Lake in Turkey. Biological Life Science, 2(3), 4-13. doi: 7827/TurkishStudies.2465
  • Bergamino, N., A. Loiselle, S., Cózar, A., M. Dattilo, A., Bracchini, L., & Rossi, C. (2007). Examining the dynamics of phytoplankton biomass in Lake Tanganyika using Empirical Orthogonal Functions. Ecological Modelling, 204, 156–162. doi: 10.1016/j.ecolmodel.2006.12.031
  • Bhagowati, B., & Ahamad, K.U. (2019). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology & Hydrobiology, 19, 155–166. doi: 10.1016/j.ecohyd.2018.03.002
  • Brown, C., Hoyer, M., Bachmann, R., & Canfield, D. (2000). Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1574–1583. doi: 10.1139/f00-090
  • Bruce, L.C., Hamilton, D., Imberger, J., Gal, G., Gophen, M., Zohary, T., & Hambright, K.D. (2006). A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling, 193, 412–436. doi: 10.1016/j. ecolmodel.2005.09.008
  • Bucak, T., Trolle, D., Tavşanoğlu, Ü. N., Çakıroğlu, A.İ., Özen, A., Jeppesen, E., & Beklioğlu., M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Science of the Total Environment, 621, 802-816. doi: 10.1016/j.scitotenv.2017.11.258
  • Carraro, E., Guyennon, N., Hamilton, D., Valsecchi, L., Manfredi, E.C., Viviano, G., Salerno, F., Tartari, G., & Copetti, D. (2012). Coupling high-resolution measurements to a threedimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698, 77–95. doi: 10.1007/s10750-012-1096-y
  • Chapra, S.C., & Reckhow, K. (1979). Expressing the phosphorus loading concept in probabalistic terms. Journal of the Fisheries Research Board of Canada, 36, 225–229. doi: 10.1139/f79-034
  • Chapra, S.C., & Canale, R.P. (1991). Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water Resources, 25, 707–715. doi:10.1016/0043- 1354(91)90046-S
  • Chung, E.G., Bombardelli, F.A., & Schladow, S.G. (2009). Modeling linkages between sediment resuspension and water quality in a shallow, eutrophic, wind-exposed lake. Ecological Modelling, 220, 1251–1265. doi:10.1016/j.ecolmodel.2009.01.038
  • Coppens, J., Trolle, D., Jeppesen, E., & Beklioğlu., M. (2020). The impact of climate change on a Mediterranean shallow lake: insights based on catchment and lake modelling. Regional Environmental Change, 20, 62. doi: 10.1007/s10113-020-01641-6
  • Deus, R., Brito, D., Kenov, I.A., Lima, M., Costa, V., Medeiros, A., Neves, R., & Alves, C.N. (2013). Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton in Tucuruí reservoir, Pará, Brazil. Ecological Modelling, 253, 28–43. doi:10.1016/j.ecolmodel.2012.10.013
  • Dillon, P.J., & Rigler, F.H. (1974a). The phosphorus-chlorophyll relationship in lakes: phosphorus-chlorophyll relationship. Limnology and Oceanography, 19, 767–773. doi:10.4319/lo.1974.19.5.0767
  • Dillon, P.J., & Rigler, F.H. (1974b). A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. Journal of the Fisheries Research Board of Canada, 31, 1771–1778. doi:10.1139/f74-225
  • Doğan, E., Kocamaz, U. E., Utkucu, M., & Yıldırım., E. (2016). Modelling daily water level fluctuations of Lake Van (Eastern Turkey) using Artificial Neural Networks. Fundamental Applied Limnology, 187 (3), 177–189. doi: 10.1127/fal/2015/0736
  • Elliott, J.A., Perrson, I., Thackeray, S.J., & Blencker, T. (2007). Phytoplankton modelling of Lake Erken Sweden by linking the models PORBE and PROTECH. Ecological Modelling, 202, 421–426. doi:10.1016/j.ecolmodel2006.11.004
  • Elliott, J.A., & Defew, L. (2012). Modelling the response of phytoplankton in a shallow lake (Loch Leven, UK) to changes in lake retention time and water temperature. Hydrobiologia, 681, 105–116. doi: 10.1007/s10750-011-0930-y
  • Elshorbagy, A., & Ormsbee., L. (2006). Object-oriented modeling approach to surface water quality management. Environmental modeling & Software, 21, 689–698. doi:10.1016/j. envsoft.2005.02.001
  • Erdoğan, A. (2009). Modelling of expert knowledge in geographic information systems-based planning of the Tuz Lake Special Environmental Protection Area, Turkey. Planning, Practice & Research, 24 (4), 435–454. doi: 10.1080/02697450903327071
  • Fetahi, T., & Mengistou, S. (2007). Trophic analysis of Lake Awassa (Ethiopia) using mass-balance Ecopath model. Ecological Modelling, 201(3-4), 398-408. doi: 10.1016/j.ecolmodel.2006.10.010
  • Fornarelli, R., Galelli, S., Castelletti, A., Antenucci, J.P., & Marti, C.L. (2013). An empirical modeling approach to predict and understand phytoplankton dynamics in a reservoir affected by interbasin water transfers. Water Resources Research, 49, 3626–3641. doi:10.1002/wrcr.20268
  • Freeman, A.M., Lamon, E.C., & Stow, C.A. (2009). Nutrient criteria for lakes, ponds, and reservoirs: a bayesian TREED model approach. Ecological Modelling, 220, 630–639. doi:10.1016/j.ecolmodel.2008.12.009
  • Ghorbani, M.A., Ravinesh, C. Deo., Karimi, V., Yaseen, Z. M., & Terzi, Ö. (2018). Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment, 32, 1683–1697. doi: 10.1007/s00477-017-1474-0
  • Gürkan, Z., Zhang, J., & Jørgensen, S.E. (2006). Development of a structurally dynamic model for forecasting the effects of restoration of Lake Fure, Denmark. Ecological Modelling, 197, 89–102. doi: 10.1016/j.ecolmodel.2006.03.006
  • Hakanson, L. (2002). Modelling Radiocesium in Lakes and Coastal Areas–– New Approaches for Ecosystem Modellers. 215 p. A Textbook with Internet Support. Kluwer, Academic Publishers.
  • Hakanson, L., & Bryhn, A.C. (2008). A dynamic mass-balance model for phosphorus in lakes with a focus on criteria for applicability and boundary conditions. Water, Air, & Soil Pollution, 187, 119–147. doi: 10.1007/s11270-007-9502-1
  • Hense, I., & Beckmann, A. (2006). Towards a model of cyanobacteria life cycle—effects of growing and resting stages on bloom formation of N2-fixing species. Ecological Modelling, 195, 205–218. doi: 10.1016/j.ecolmodel.2005.11.018
  • Imboden, D.M. (1974). Phosphorus model of lake eutrophication: P model of lake eutrophication. Limnology and Oceanography, 19, 297–304. doi:10.4319/ lo.1974.19.2.0297
  • Imboden, D.M., & Gächter, R. (1978). A dynamic lake model for trophic state prediction. Ecological Modelling, 4, 77–98. doi:10.1016/0304-3800(78)90001-7
  • Jensen, J.P., Pedersen, A.R., Jeppesen, E., & Søndergaard, M. (2006). An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnology and Oceanography, 51, 791–800. doi: 10.4319/lo.2006.51.1_part_2.0791
  • Karaaslan, Y., Ertürk, F., & Akkoyunlu, A. (2010). Implementation of Aquatox, Pamolare and Wasp Models to Mogan Lake. Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi, Sigma 28, 110-123
  • Karafistan, A. (2013). Conceptual modelling of Lake Manyas, Turkey. Turkish Journal of Engineering and Environmental Sciences, 37, 306 – 317. doi: 10.3906/muh-1212-10
  • Karul, C., Soyupak, S., Çilesiz, A.F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134, (2-3), 145-152. doi: 101016/S0304-3800(00)00360-4
  • Katip, A., İleri , S., Karaer, F., & Onur, S. (2015). Determination of the trophic state of Lake Uluabat (Bursa-Turkey). Ekoloji 24, 95, 1-9. doi: 10.5053/ekoloji.2015.06
  • Kişi, Ö. (2009). Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey. Hydrological Processes, 23, 2081–2092. doi:10.1002/hyp.7340
  • Leon, L.F., Smith, R.E.H., Hipsey, M.R., Bocaniov, S.A., Higgins, S.N., Hecky, R.E., Antenucci, J.P., Imberger, J.A., & Guildford, S.J. (2011). Application of a 3D hydrodynamic-biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie. Journal of Great Lakes Research, 37, 41–53. doi:10.1016/j.jglr.2010.12.007
  • Li-kun, Y., Sen, P., Xin-hua, Z., & Xia, L. (2017). Development of a two dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis. Ecological Modelling, 345, 63–74. doi: 10.1016/j.ecolmodel.2016.11.014
  • Lindim, C., Becker, A., Grüneberg, B., & Fischer, H. (2015). Modelling the effects of nutrient loads reduction and testing the N and P control paradigm in a German shallow lake. Ecological Engineering, 82, 415–427. doi: 10.1016/j.ecoleng.2015.05.009
  • Makarewicz, J.C., & Bertram, P. (1991). Evidence for the restoration of the Lake Erie ecosystem. Bioscience 41 (4), 216–223. doi: 10.2307/1311411
  • Malmaeus, J.M., & Hakanson, L. (2003). A dynamic model to predict suspended particulate matter in lakes. Ecological Modelling, 167, 247–262. doi: 10.1016/S0304-3800(03)00166-2
  • Malmaeus, J.M., Blenckner, T., Markensten, H., & Persson, I. (2006). Lake phosphorus dynamics and climate warming: A mechanistic model approach. Ecological Modelling, 190, 1-1-14. doi: 10.1016/S0304-3800(03)00297-7
  • Mieleitner, J., & Reichert, P. (2006). Analysis of the transferability of a biogeochemical lake model to lakes of different trophic state. Ecological Modelling, 194, 49–61. doi:10.1016/j.ecolmodel.2005.10.039
  • Misra, A.K. (2007). Mathematical modeling and analysis of eutrophication of water bodies caused by nutrients. Nonlinear Analysis Modelling and Control, 12 (4), 511–524. doi: 10.1016/j.nonrwa.2005.09.002
  • Mulderij, G., Mau, B., van Donk, E., & Gross, M.E. (2007). Allelopathic activity of Stratiotes aloides on phytoplankton—towards identification of allelopathic substances. Hydrobiologia 584, 89–100. doi:10.1007/s10750-007-0602-0
  • Muhammetoğlu, A., & Soyupak, S. (2000). A three-dimensional water quality-macrophyte interaction model for shallow lakes. Ecological Modelling, 133 (2-3), 161-180. doi: 10.1016/S0304-3800(00)00297-0
  • Muraoka, K., & Fukushima, T. (1986). On the box model for prediction of water quality in eutrophic lakes. Ecological Modelling, 31, 221–236. doi:10.1016/0304-3800(86) 90065-7
  • Nürnberg, G.K. (1984). The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnology and Oceanography, 29, 111–124. doi: 10.4319/lo.1984.29.1.0111
  • Nürnberg, G.K., & LaZerte, B.D. (2004). Modeling the effect of development on internal phosphorus load in nutrient-poor lakes. Water Resources Reseaech, 40, W01105. doi:10.1029/2003WR002410
  • Ofir, E., Heymans, J.J., Shapiro, J., Goren, M., Spanier, E., & Gal, G. (2017). Predicting the impact of Lake Biomanipulation based on food-web modeling—Lake Kinneret as a case study. Ecological Modelling, 348, 14–24. doi: 0.1016/j.ecolmodel.2016.12.019
  • Onderka, M. (2007). Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia)—a simple regression model. Ecological Modelling, 209, 412–416. doi:10.1016/j. ecolmodel.2007.07.028
  • Pers, B. (2005). Modeling the response of eutrophication control measures in a Swedish lake. Ambio 34, 552–558. doi:10.1639/0044-7447(2005)034[0552: MTROEC]2.0.CO;2
  • Pulatsü, S., & Aydın, F. (1997). Water quality and phosphorus budget of Mogan Lake, Turkey. Acta hydrochimica et hydrobiologica. 25(3), 128-134. doi: 10.1002/AHEH.19970250303
  • Reckhow, K. (1993). A random coefficient model for chlorophyll nutrient relationships in lakes. Ecological Modelling, 70, 35–50. doi:10.1016/0304-3800(93)90071-Y
  • Reid, T., & Crout, N. (2008). A thermodynamic model of freshwater Antarctic lake ice. Ecological Modelling, 210, 231–241. doi: 10.1016/j.ecolmodel.2007.07.029
  • Rucinski, D.K., DePinto, J.V., Beletsky, D., & Scavia, D. (2016). Modeling hypoxia in the central basin of Lake Erie under potential phosphorus load reduction scenarios. Journal of Great Lakes Research, 42 (6), 1206-1211. doi: 10.1016/j.jglr.2016.07.001
  • Salerno, F., Viviano, G., Carraro, E., Manfredi, E.C., Lami, A., Musazzi, S., Marchetto, A., Guyennon, N., Tartari, G., & Copetti, D. (2014). Total phosphorus reference condition for subalpine lakes: a comparison among traditional methods and a new processbased watershed approach. Journal of Environmental Management, 145, 94–105. doi: 10.1016/j.jenvman.2014.06.011
  • Shukla, J.B., Misra, A.K., & Chandra, P. (2008). Mathematical modelling and analysis of the depletion of dissolved oxygen in eutrophied water bodies affected by organic pollutants. Nonlinear Analysis: Real World Applications, 9, 1851–1865. doi: 10.1016/j.nonrwa.2007.05.016
  • Şanal, M., Köse, B., Coşkun, T., & Demir, N. (2015). Mogan Gölü’nde sucul makrofitlere göre ekolojik kalitenin tahmini. Iğdır Üniversitesi Fen Bilimleri Dergisi, 5, 51-55.
  • Şen, Z., Kadioglu, M., & Batur, E. (2000). Stochastic modeling of the Van Lake monthly level fluctuations in Turkey. Theoratical and Applied Climatology, 65, 99-110. doi: 10.1007/s007040050007
  • Thapanand, T., Moreau, J., Jutagate, T., Wongrat, P., Leckhonlayut, T., Meksumpun, C., Rodloi, A., Dulyapruk, V., & Wongrat, L. (2007). Towards possible fishery management strategies in a newly impounded man-made lake in Thailand. Ecological Modelling, 204 (1-2), 143-155. doi: 0.1016/j.ecolmodel.2006.12.041
  • Vanhuet, H. (1992). Phosphorus eutrophication in the SW Frisian lake district. 1. Monitoring and assessment of a dynamic mass balance model. Hydrobiologia, 233, 259–270. doi:10.1007/BF00016114
  • Villanueva, M.C.S., Isumbisho, M., Kaningini, B., Moreau, J., & Micha, J.C. (2008). Modelling trophic interactions in Lake Kivu. What roles do exotics play? Ecological Modelling, 212, 422–438. doi: 10.1016/j.ecolmodel.2007.10.047
  • Vinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment, 651, 2085-3001. doi:1010.10.1016/j. scitotenv. 2018. 09. 320
  • Wu, Z., Liu, Y., Liang, Z., Wu, S., & Guo, H. (2017). Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: a dynamic model with temporal Bayesian hierarchical inference. Water Resources, 116, 231–240. doi:10.1016/j. watres.2017.03.039
  • Xu, Y., Schroth, A.W., Isles, P.D.F., & Rizzo, D.M. (2015). Quantile regression improves models of lake eutrophication with implications for ecosystem-specific management. Freshwater Biology, 60, 1841–1853. doi:10.1111/fwb.126 15
  • Yamashiki, Y., Kato, M., Takara, K., Nakakita, E., Kumagai, M., & Jiao, C. (2010). Sensitivity analysis on Lake Biwa under the A1B SRES climate change scenario using Biwa-3D Integrated Assessment Model. Part I. Projection of lake temperature. Hydrological Research Letters, 4, 45–49. doi: 10.3178/HRL.4.45
  • Zhang, J., Jørgensen, S.E., Tan, C.O., & Beklioglu, M. (2003). Hysteresis in vegetation shift—Lake Mogan Prognoses. Ecological Modelling, 164, 227–238. doi: 10.1016/S0304-3800(03)00050-4
  • Zhang, H., Culver, D.A., & Boegman, L. (2008). A two-dimensional ecological model of Lake Erie: application to estimate dreissenid impacts on large lake plankton population. Ecological Modelling, 214, 219–240. doi: 10.1016/j.ecolmodel.2008.02.005
  • Zhao, J., Ramin, M., Cheng, V., & Arhonditsis, G.B. (2008). Plankton community patterns across a trophic gradient: the role of zooplankton functional groups. Ecological Modelling, 213, 417–436. doi: 10.1016/ j.ecolmodel.2008.01.016

Göllerde Ötrofikasyona İlişkin Model Uygulamaları

Year 2022, , 188 - 198, 29.12.2022
https://doi.org/10.46384/jmsf.1181257

Abstract

Göllerin ötrofikasyonu, günümüzde ekolojik endişe yaratan olgulardan biridir. Göller özellikle gelişmekte olan ülkelerde artan antropojenik faaliyetler nedeniyle su kalitesinde bozulma ve ekolojik dengesizlik sorunuyla karşı karşıyadır. Bu bağlamda, son birkaç on yıldır limnologlar ve çevre bilimcileri, sucul ekosistemlerin bu sorununa yönelik çalışmalarında, sayısal modellemeyi bir araç olarak kullanmaktadır. Ekolojik modeller, ekosistem proses-etkileşimlerini, geleceğe yönelik yönetim senaryolarını simule etmek ve ötrofikasyona karşı sistemin tepkisini değerlendirmek için kullanılmaktadır. Ekolojik modellerin kullanımı ile göllerde ötrofikasyonun tahmini ve kontrolü eskiye göre daha kolay hale gelmiştir. Ancak göllere özgü sorunlar nedeniyle modeller giderek daha ayrıntılı bir formata bürünmeye devam etmektedir. Bu derleme çalışmasında; a) Ötrofikasyon odaklı modelleme çalışmalarında kullanılan model tipleri özetlenmiş b) Farklı ötrofikasyon unsurlarını ve olaylarını esas alan çeşitli model kullanımlarına, güncel bazı yabancı ve yerli çalışmalarla dikkat çekilmiştir.

References

  • Ahlgren, I., Frisk, T., & Kamp-Nielsen, K. (1988). Empirical and theoretical models of phosphorus loading, retention and concentration vs. lake trophic state. Hydrobiologia, 170, 285-303. doi: 10.1007/BF00024910
  • Altunkaynak, D., & Şen, Z. (2007). Fuzzy logic model of lake water level fluctuations in Lake Van, Turkey. Theoratical and Applied Climatology, 90, 227–233. doi:10.1007/s00704-006-0267-z
  • Anagnostou, E., Gianni, A., & Zacharias, I. (2017). Ecological modeling and eutrophication-a review. Natural Resource Modeling, 30, 2130. doi.org/10.1111/nrm.12130
  • Anonim (2013). Yedi Renkli Göle Yedi Renkli Hayat Projesi – 2013 ©WWF-Türkiye (Doğal Hayatı Koruma Vakfı), İstanbul, Türkiye. 36 s.
  • Antonopoulos, V., & Gianniou, S. K. (2003). Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecological Modelling, 160, 39-53. doi: 10.1016/S0304-3800(02)00286-7
  • Arhonditsis, G.B., & Brett, M.T. (2005a). Eutrophication model for Lake Washington (USA). Part I. Model description and sensitivity analysis. Ecological Modelling, 187, 140–178. doi:10.1016/j.ecolmodel.2005.01.040
  • Arhonditsis, G.B., & Brett, M.T. (2005b). Eutrophication model for Lake Washington (USA) Part II—Model calibration and system dynamics analysis. Ecological Modelling, 187, 179-200. doi:10.1016/j.ecolmodel.2005.01.039
  • Bahadır, M., & Özdemir, M.A. (2011). Climate trend analysis of the level changes of Iznik Lake in Turkey. Biological Life Science, 2(3), 4-13. doi: 7827/TurkishStudies.2465
  • Bergamino, N., A. Loiselle, S., Cózar, A., M. Dattilo, A., Bracchini, L., & Rossi, C. (2007). Examining the dynamics of phytoplankton biomass in Lake Tanganyika using Empirical Orthogonal Functions. Ecological Modelling, 204, 156–162. doi: 10.1016/j.ecolmodel.2006.12.031
  • Bhagowati, B., & Ahamad, K.U. (2019). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology & Hydrobiology, 19, 155–166. doi: 10.1016/j.ecohyd.2018.03.002
  • Brown, C., Hoyer, M., Bachmann, R., & Canfield, D. (2000). Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1574–1583. doi: 10.1139/f00-090
  • Bruce, L.C., Hamilton, D., Imberger, J., Gal, G., Gophen, M., Zohary, T., & Hambright, K.D. (2006). A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling, 193, 412–436. doi: 10.1016/j. ecolmodel.2005.09.008
  • Bucak, T., Trolle, D., Tavşanoğlu, Ü. N., Çakıroğlu, A.İ., Özen, A., Jeppesen, E., & Beklioğlu., M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Science of the Total Environment, 621, 802-816. doi: 10.1016/j.scitotenv.2017.11.258
  • Carraro, E., Guyennon, N., Hamilton, D., Valsecchi, L., Manfredi, E.C., Viviano, G., Salerno, F., Tartari, G., & Copetti, D. (2012). Coupling high-resolution measurements to a threedimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698, 77–95. doi: 10.1007/s10750-012-1096-y
  • Chapra, S.C., & Reckhow, K. (1979). Expressing the phosphorus loading concept in probabalistic terms. Journal of the Fisheries Research Board of Canada, 36, 225–229. doi: 10.1139/f79-034
  • Chapra, S.C., & Canale, R.P. (1991). Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water Resources, 25, 707–715. doi:10.1016/0043- 1354(91)90046-S
  • Chung, E.G., Bombardelli, F.A., & Schladow, S.G. (2009). Modeling linkages between sediment resuspension and water quality in a shallow, eutrophic, wind-exposed lake. Ecological Modelling, 220, 1251–1265. doi:10.1016/j.ecolmodel.2009.01.038
  • Coppens, J., Trolle, D., Jeppesen, E., & Beklioğlu., M. (2020). The impact of climate change on a Mediterranean shallow lake: insights based on catchment and lake modelling. Regional Environmental Change, 20, 62. doi: 10.1007/s10113-020-01641-6
  • Deus, R., Brito, D., Kenov, I.A., Lima, M., Costa, V., Medeiros, A., Neves, R., & Alves, C.N. (2013). Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton in Tucuruí reservoir, Pará, Brazil. Ecological Modelling, 253, 28–43. doi:10.1016/j.ecolmodel.2012.10.013
  • Dillon, P.J., & Rigler, F.H. (1974a). The phosphorus-chlorophyll relationship in lakes: phosphorus-chlorophyll relationship. Limnology and Oceanography, 19, 767–773. doi:10.4319/lo.1974.19.5.0767
  • Dillon, P.J., & Rigler, F.H. (1974b). A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. Journal of the Fisheries Research Board of Canada, 31, 1771–1778. doi:10.1139/f74-225
  • Doğan, E., Kocamaz, U. E., Utkucu, M., & Yıldırım., E. (2016). Modelling daily water level fluctuations of Lake Van (Eastern Turkey) using Artificial Neural Networks. Fundamental Applied Limnology, 187 (3), 177–189. doi: 10.1127/fal/2015/0736
  • Elliott, J.A., Perrson, I., Thackeray, S.J., & Blencker, T. (2007). Phytoplankton modelling of Lake Erken Sweden by linking the models PORBE and PROTECH. Ecological Modelling, 202, 421–426. doi:10.1016/j.ecolmodel2006.11.004
  • Elliott, J.A., & Defew, L. (2012). Modelling the response of phytoplankton in a shallow lake (Loch Leven, UK) to changes in lake retention time and water temperature. Hydrobiologia, 681, 105–116. doi: 10.1007/s10750-011-0930-y
  • Elshorbagy, A., & Ormsbee., L. (2006). Object-oriented modeling approach to surface water quality management. Environmental modeling & Software, 21, 689–698. doi:10.1016/j. envsoft.2005.02.001
  • Erdoğan, A. (2009). Modelling of expert knowledge in geographic information systems-based planning of the Tuz Lake Special Environmental Protection Area, Turkey. Planning, Practice & Research, 24 (4), 435–454. doi: 10.1080/02697450903327071
  • Fetahi, T., & Mengistou, S. (2007). Trophic analysis of Lake Awassa (Ethiopia) using mass-balance Ecopath model. Ecological Modelling, 201(3-4), 398-408. doi: 10.1016/j.ecolmodel.2006.10.010
  • Fornarelli, R., Galelli, S., Castelletti, A., Antenucci, J.P., & Marti, C.L. (2013). An empirical modeling approach to predict and understand phytoplankton dynamics in a reservoir affected by interbasin water transfers. Water Resources Research, 49, 3626–3641. doi:10.1002/wrcr.20268
  • Freeman, A.M., Lamon, E.C., & Stow, C.A. (2009). Nutrient criteria for lakes, ponds, and reservoirs: a bayesian TREED model approach. Ecological Modelling, 220, 630–639. doi:10.1016/j.ecolmodel.2008.12.009
  • Ghorbani, M.A., Ravinesh, C. Deo., Karimi, V., Yaseen, Z. M., & Terzi, Ö. (2018). Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment, 32, 1683–1697. doi: 10.1007/s00477-017-1474-0
  • Gürkan, Z., Zhang, J., & Jørgensen, S.E. (2006). Development of a structurally dynamic model for forecasting the effects of restoration of Lake Fure, Denmark. Ecological Modelling, 197, 89–102. doi: 10.1016/j.ecolmodel.2006.03.006
  • Hakanson, L. (2002). Modelling Radiocesium in Lakes and Coastal Areas–– New Approaches for Ecosystem Modellers. 215 p. A Textbook with Internet Support. Kluwer, Academic Publishers.
  • Hakanson, L., & Bryhn, A.C. (2008). A dynamic mass-balance model for phosphorus in lakes with a focus on criteria for applicability and boundary conditions. Water, Air, & Soil Pollution, 187, 119–147. doi: 10.1007/s11270-007-9502-1
  • Hense, I., & Beckmann, A. (2006). Towards a model of cyanobacteria life cycle—effects of growing and resting stages on bloom formation of N2-fixing species. Ecological Modelling, 195, 205–218. doi: 10.1016/j.ecolmodel.2005.11.018
  • Imboden, D.M. (1974). Phosphorus model of lake eutrophication: P model of lake eutrophication. Limnology and Oceanography, 19, 297–304. doi:10.4319/ lo.1974.19.2.0297
  • Imboden, D.M., & Gächter, R. (1978). A dynamic lake model for trophic state prediction. Ecological Modelling, 4, 77–98. doi:10.1016/0304-3800(78)90001-7
  • Jensen, J.P., Pedersen, A.R., Jeppesen, E., & Søndergaard, M. (2006). An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnology and Oceanography, 51, 791–800. doi: 10.4319/lo.2006.51.1_part_2.0791
  • Karaaslan, Y., Ertürk, F., & Akkoyunlu, A. (2010). Implementation of Aquatox, Pamolare and Wasp Models to Mogan Lake. Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi, Sigma 28, 110-123
  • Karafistan, A. (2013). Conceptual modelling of Lake Manyas, Turkey. Turkish Journal of Engineering and Environmental Sciences, 37, 306 – 317. doi: 10.3906/muh-1212-10
  • Karul, C., Soyupak, S., Çilesiz, A.F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134, (2-3), 145-152. doi: 101016/S0304-3800(00)00360-4
  • Katip, A., İleri , S., Karaer, F., & Onur, S. (2015). Determination of the trophic state of Lake Uluabat (Bursa-Turkey). Ekoloji 24, 95, 1-9. doi: 10.5053/ekoloji.2015.06
  • Kişi, Ö. (2009). Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey. Hydrological Processes, 23, 2081–2092. doi:10.1002/hyp.7340
  • Leon, L.F., Smith, R.E.H., Hipsey, M.R., Bocaniov, S.A., Higgins, S.N., Hecky, R.E., Antenucci, J.P., Imberger, J.A., & Guildford, S.J. (2011). Application of a 3D hydrodynamic-biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie. Journal of Great Lakes Research, 37, 41–53. doi:10.1016/j.jglr.2010.12.007
  • Li-kun, Y., Sen, P., Xin-hua, Z., & Xia, L. (2017). Development of a two dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis. Ecological Modelling, 345, 63–74. doi: 10.1016/j.ecolmodel.2016.11.014
  • Lindim, C., Becker, A., Grüneberg, B., & Fischer, H. (2015). Modelling the effects of nutrient loads reduction and testing the N and P control paradigm in a German shallow lake. Ecological Engineering, 82, 415–427. doi: 10.1016/j.ecoleng.2015.05.009
  • Makarewicz, J.C., & Bertram, P. (1991). Evidence for the restoration of the Lake Erie ecosystem. Bioscience 41 (4), 216–223. doi: 10.2307/1311411
  • Malmaeus, J.M., & Hakanson, L. (2003). A dynamic model to predict suspended particulate matter in lakes. Ecological Modelling, 167, 247–262. doi: 10.1016/S0304-3800(03)00166-2
  • Malmaeus, J.M., Blenckner, T., Markensten, H., & Persson, I. (2006). Lake phosphorus dynamics and climate warming: A mechanistic model approach. Ecological Modelling, 190, 1-1-14. doi: 10.1016/S0304-3800(03)00297-7
  • Mieleitner, J., & Reichert, P. (2006). Analysis of the transferability of a biogeochemical lake model to lakes of different trophic state. Ecological Modelling, 194, 49–61. doi:10.1016/j.ecolmodel.2005.10.039
  • Misra, A.K. (2007). Mathematical modeling and analysis of eutrophication of water bodies caused by nutrients. Nonlinear Analysis Modelling and Control, 12 (4), 511–524. doi: 10.1016/j.nonrwa.2005.09.002
  • Mulderij, G., Mau, B., van Donk, E., & Gross, M.E. (2007). Allelopathic activity of Stratiotes aloides on phytoplankton—towards identification of allelopathic substances. Hydrobiologia 584, 89–100. doi:10.1007/s10750-007-0602-0
  • Muhammetoğlu, A., & Soyupak, S. (2000). A three-dimensional water quality-macrophyte interaction model for shallow lakes. Ecological Modelling, 133 (2-3), 161-180. doi: 10.1016/S0304-3800(00)00297-0
  • Muraoka, K., & Fukushima, T. (1986). On the box model for prediction of water quality in eutrophic lakes. Ecological Modelling, 31, 221–236. doi:10.1016/0304-3800(86) 90065-7
  • Nürnberg, G.K. (1984). The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnology and Oceanography, 29, 111–124. doi: 10.4319/lo.1984.29.1.0111
  • Nürnberg, G.K., & LaZerte, B.D. (2004). Modeling the effect of development on internal phosphorus load in nutrient-poor lakes. Water Resources Reseaech, 40, W01105. doi:10.1029/2003WR002410
  • Ofir, E., Heymans, J.J., Shapiro, J., Goren, M., Spanier, E., & Gal, G. (2017). Predicting the impact of Lake Biomanipulation based on food-web modeling—Lake Kinneret as a case study. Ecological Modelling, 348, 14–24. doi: 0.1016/j.ecolmodel.2016.12.019
  • Onderka, M. (2007). Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia)—a simple regression model. Ecological Modelling, 209, 412–416. doi:10.1016/j. ecolmodel.2007.07.028
  • Pers, B. (2005). Modeling the response of eutrophication control measures in a Swedish lake. Ambio 34, 552–558. doi:10.1639/0044-7447(2005)034[0552: MTROEC]2.0.CO;2
  • Pulatsü, S., & Aydın, F. (1997). Water quality and phosphorus budget of Mogan Lake, Turkey. Acta hydrochimica et hydrobiologica. 25(3), 128-134. doi: 10.1002/AHEH.19970250303
  • Reckhow, K. (1993). A random coefficient model for chlorophyll nutrient relationships in lakes. Ecological Modelling, 70, 35–50. doi:10.1016/0304-3800(93)90071-Y
  • Reid, T., & Crout, N. (2008). A thermodynamic model of freshwater Antarctic lake ice. Ecological Modelling, 210, 231–241. doi: 10.1016/j.ecolmodel.2007.07.029
  • Rucinski, D.K., DePinto, J.V., Beletsky, D., & Scavia, D. (2016). Modeling hypoxia in the central basin of Lake Erie under potential phosphorus load reduction scenarios. Journal of Great Lakes Research, 42 (6), 1206-1211. doi: 10.1016/j.jglr.2016.07.001
  • Salerno, F., Viviano, G., Carraro, E., Manfredi, E.C., Lami, A., Musazzi, S., Marchetto, A., Guyennon, N., Tartari, G., & Copetti, D. (2014). Total phosphorus reference condition for subalpine lakes: a comparison among traditional methods and a new processbased watershed approach. Journal of Environmental Management, 145, 94–105. doi: 10.1016/j.jenvman.2014.06.011
  • Shukla, J.B., Misra, A.K., & Chandra, P. (2008). Mathematical modelling and analysis of the depletion of dissolved oxygen in eutrophied water bodies affected by organic pollutants. Nonlinear Analysis: Real World Applications, 9, 1851–1865. doi: 10.1016/j.nonrwa.2007.05.016
  • Şanal, M., Köse, B., Coşkun, T., & Demir, N. (2015). Mogan Gölü’nde sucul makrofitlere göre ekolojik kalitenin tahmini. Iğdır Üniversitesi Fen Bilimleri Dergisi, 5, 51-55.
  • Şen, Z., Kadioglu, M., & Batur, E. (2000). Stochastic modeling of the Van Lake monthly level fluctuations in Turkey. Theoratical and Applied Climatology, 65, 99-110. doi: 10.1007/s007040050007
  • Thapanand, T., Moreau, J., Jutagate, T., Wongrat, P., Leckhonlayut, T., Meksumpun, C., Rodloi, A., Dulyapruk, V., & Wongrat, L. (2007). Towards possible fishery management strategies in a newly impounded man-made lake in Thailand. Ecological Modelling, 204 (1-2), 143-155. doi: 0.1016/j.ecolmodel.2006.12.041
  • Vanhuet, H. (1992). Phosphorus eutrophication in the SW Frisian lake district. 1. Monitoring and assessment of a dynamic mass balance model. Hydrobiologia, 233, 259–270. doi:10.1007/BF00016114
  • Villanueva, M.C.S., Isumbisho, M., Kaningini, B., Moreau, J., & Micha, J.C. (2008). Modelling trophic interactions in Lake Kivu. What roles do exotics play? Ecological Modelling, 212, 422–438. doi: 10.1016/j.ecolmodel.2007.10.047
  • Vinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment, 651, 2085-3001. doi:1010.10.1016/j. scitotenv. 2018. 09. 320
  • Wu, Z., Liu, Y., Liang, Z., Wu, S., & Guo, H. (2017). Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: a dynamic model with temporal Bayesian hierarchical inference. Water Resources, 116, 231–240. doi:10.1016/j. watres.2017.03.039
  • Xu, Y., Schroth, A.W., Isles, P.D.F., & Rizzo, D.M. (2015). Quantile regression improves models of lake eutrophication with implications for ecosystem-specific management. Freshwater Biology, 60, 1841–1853. doi:10.1111/fwb.126 15
  • Yamashiki, Y., Kato, M., Takara, K., Nakakita, E., Kumagai, M., & Jiao, C. (2010). Sensitivity analysis on Lake Biwa under the A1B SRES climate change scenario using Biwa-3D Integrated Assessment Model. Part I. Projection of lake temperature. Hydrological Research Letters, 4, 45–49. doi: 10.3178/HRL.4.45
  • Zhang, J., Jørgensen, S.E., Tan, C.O., & Beklioglu, M. (2003). Hysteresis in vegetation shift—Lake Mogan Prognoses. Ecological Modelling, 164, 227–238. doi: 10.1016/S0304-3800(03)00050-4
  • Zhang, H., Culver, D.A., & Boegman, L. (2008). A two-dimensional ecological model of Lake Erie: application to estimate dreissenid impacts on large lake plankton population. Ecological Modelling, 214, 219–240. doi: 10.1016/j.ecolmodel.2008.02.005
  • Zhao, J., Ramin, M., Cheng, V., & Arhonditsis, G.B. (2008). Plankton community patterns across a trophic gradient: the role of zooplankton functional groups. Ecological Modelling, 213, 417–436. doi: 10.1016/ j.ecolmodel.2008.01.016
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Limnology
Journal Section Review
Authors

Serap Pulatsü 0000-0001-5277-417X

Publication Date December 29, 2022
Submission Date September 28, 2022
Published in Issue Year 2022

Cite

APA Pulatsü, S. (2022). Göllerde Ötrofikasyona İlişkin Model Uygulamaları. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 5(2), 188-198. https://doi.org/10.46384/jmsf.1181257