Research Article
BibTex RIS Cite

Karadeniz'de 2000-2022 Yılları Arasında Yüzey Sıcaklığının Mekansal ve Zamansal Değişimi

Year 2023, , 158 - 165, 27.12.2023
https://doi.org/10.46384/jmsf.1386973

Abstract

Bu çalışma, 2000-2022 yılları arasında Karadeniz'deki Deniz Yüzeyi Sıcaklığının (DYS) uzamsal-zamansal değişkenliğinin aylık ve yıllar arası ölçeklerde kapsamlı bir değerlendirmesini sunmakta olup, uzun dönemli DYS değişimlerinin büyük ölçekli atmosferik sistemlerin bağlantısının anlaşılmasına amacındadır. Karadeniz'deki DYS'nin aylık değişimleri farklı mevsimsel dağılım biçimleri göstermektedir. Çalışma, kış aylarında Kuzey Atlantik Salınımı (NAO), Doğu Atlantik/Batı Rusya (EA-WR) ve El Niño-Güney Salınımı (ENSO) gibi iklim endekslerini kullanarak büyük ölçekli atmosferik modellerin yıllar arası DYS değişimleri üzerindeki potansiyel etkilerini değerlendiriyor. Sonuçlar, incelenen büyük ölçekli atmosferik salınımların SST anomalilerini etkilemede önemli bir rol oynadığını, özellikle NAO ve EA-WR endekslerinin Karadeniz'in SST anormalliklerini etkilediğini göstermektedir. NAO endeksi, 2003, 2006, 2012, 2017 (soğuk) ve 2018, 2020, 2021 (sıcak) yıllarında gözlemlendiği, sıcak kışlarda negatif değerler ve soğuk kışlarda pozitif değerler sergilemiştir. NAO ve DYS anomalileri arasındaki ilişki 2000-2022 döneminde o kadar baskın değildir; bu farklılık, muhtemelen bu çalışmanın kapsamı dışında tutulan NAO ve ENSO'nun birleşik etkisinden kaynaklanmıştır. EA-WR paterni, Karadeniz'in DYS'nı etkileyen bir diğer önemli büyük ölçekli atmosferik dinamik olarak tanımlanmıştır. Belirli yıllardaki soğuk DYS anomalilerini açıklasa da aşırı sıcak DYS yıllarını açıklayamaz. ENSO'nun etkisi DYS ekstrem ısınma dönemlerini açıklamak için bir şekilde sonuçsuz kalsa da 2016-2022 arasındaki DYS değişimleri, özellikle pozitif SOI endeks değerlerinin Karadeniz'deki sıcak SST yıllarıyla çakıştığı 2018 ve 2021'deki El Niño olaylarıyla yakından uyumludur.

References

  • Akpınar, A., Fach, B. A., & Oğuz, T. (2017). Observing the subsurface thermal signature of the Black Sea cold intermediate layer with Argo profiling floats. Deep Sea Research Part I: Oceanographic Research Papers, 124, 140–152. https://doi.org/10.1016/j.dsr.2017.04.002
  • Akpınar, A., Sadighrad, E., Fach, B. A., & Arkın, S. (2022). Eddy Induced Cross-Shelf Exchanges in the Black Sea. Remote Sensing, 14(19), 4881. https://doi.org/10.3390/rs14194881
  • Artamonov, Yu. V., Skripaleva, E. A., Kolmak, R. V., & Fedirko, A. V. (2020). Seasonal Variability of Temperature Fronts in the Black Sea from Satellite Data. Izvestiya, Atmospheric and Oceanic Physics, 56(9), 1007–1021. https://doi.org/10.1134/S0001433820090030
  • Belokopytov, V. N. (2011). Interannual variations of the renewal of waters of the cold intermediate layer in the Black Sea for the last decades. Physical Oceanography, 20(5), 347–355. https://doi.org/10.1007/s11110-011-9090-x
  • Bulgin, C. E., Merchant, C. J., & Ferreira, D. (2020). Tendencies, variability and persistence of sea surface temperature anomalies. Scientific Reports, 10(1), 7986. https://doi.org/10.1038/s41598-020-64785-9
  • Capet, A., Barth, A., Beckers, J.-M., & Marilaure, G. (2012). Interannual variability of Black Sea’s hydrodynamics and connection to atmospheric patterns. Deep Sea Research Part II: Topical Studies in Oceanography, 77–80, 128–142. https://doi.org/10.1016/j.dsr2.2012.04.010
  • Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., & Grégoire, M. (2016). Decline of the Black Sea oxygen inventory. Biogeosciences, 13(4), 1287–1297. https://doi.org/10.5194/bg-13-1287-2016
  • Capet, A., Vandenbulcke, L., & Grégoire, M. (2020). A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status. Biogeosciences, 17(24), 6507–6525. https://doi.org/10.5194/bg-17-6507-2020
  • Çokacar, T., Oğuz, T., & Kubilay, N. (2004). Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 51(8). https://doi.org/10.1016/j.dsr.2004.03.007
  • Efimov, V. V., & Komarovskaya, O. I. (2018). Spatial Structure and Recurrence of Large-Scale Temperature Anomalies of the Sea Surface Temperature in the Black Sea. Oceanology, 58(2), 155–163. https://doi.org/10.1134/S0001437018020030
  • Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y., & Swart, N. C. (2016). Making sense of the early-2000s warming slowdown. Nature Climate Change, 6(3), 224–228. https://doi.org/10.1038/nclimate2938
  • Ginzburg, A. I., Kostianoy, A. G., Nezlin, N. P., Soloviev, D. M., & Stanichny, S. V. (2002). Anticyclonic eddies in the northwestern Black Sea. Journal of Marine Systems, 32(1–3), 91–106. https://doi.org/10.1016/S0924-7963(02)00035-0
  • Ginzburg, A. I., Kostianoy, A. G., Serykh, I. V., & Lebedev, S. A. (2021). Climate Change in the Hydrometeorological Parameters of the Black and Azov Seas (1980–2020). Oceanology, 61(6), 745–756. https://doi.org/10.1134/S0001437021060060
  • Ginzburg, A. I., Kostianoy, A. G., & Sheremet, N. A. (2004). Seasonal and interannual variability of the Black Sea surface temperature as revealed from satellite data (1982–2000). Journal of Marine Systems, 52(1–4), 33–50. https://doi.org/10.1016/j.jmarsys.2004.05.002
  • Ginzburg, A. I., Kostianoy, A. G., & Sheremet, N. A. (2007). Sea Surface Temperature Variability. In The Black Sea Environment (pp. 255–275). Springer Berlin Heidelberg. https://doi.org/10.1007/698_5_067
  • Gregg, M. C. (2005). Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre. Geophysical Research Letters, 32(3), L03604. https://doi.org/10.1029/2004GL021580
  • Kazmin, A. S., & Zatsepin, A. G. (2007). Long-term variability of surface temperature in the Black Sea, and its connection with the large-scale atmospheric forcing. Journal of Marine Systems, 68(1–2), 293–301. https://doi.org/10.1016/j.jmarsys.2007.01.002
  • Korotaev, G. (2003a). Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. Journal of Geophysical Research, 108(C4), 3122. https://doi.org/10.1029/2002JC001508
  • Korotaev, G. (2003b). Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. Journal of Geophysical Research, 108(C4), 3122. https://doi.org/10.1029/2002JC001508
  • Korotaev, G., Oğuz, T., & Riser, S. (2006). Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats. Deep Sea Research Part II: Topical Studies in Oceanography, 53(17–19), 1901–1910. https://doi.org/10.1016/j.dsr2.2006.04.017
  • Kubryakova, E. A., Kubryakov, A. A., & Stanichny, S. V. (2018). Impact of Winter Cooling on Water Vertical Entrainment and Intensity of Phytoplankton Bloom in the Black Sea. Morskoy Gidrofizicheskiy Zhurnal, 3. https://doi.org/10.22449/0233-7584-2018-3-206-222
  • Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., & Donlon, C. (2019). Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Scientific Data, 6(1), 223. https://doi.org/10.1038/s41597-019-0236-x
  • Mikaelyan, A. S., Silkin, V. A., & Pautova, L. A. (2011). Coccolithophorids in the Black Sea: Their interannual and long-term changes. Oceanology, 51(1), 39–48. https://doi.org/10.1134/S0001437011010127
  • Miladinova, S., Stips, A., Garcia‐Gorriz, E., & Macias Moy, D. (2017). Black <scp>S</scp> ea thermohaline properties: Long‐term trends and variations. Journal of Geophysical Research: Oceans, 122(7), 5624–5644. https://doi.org/10.1002/2016JC012644
  • Miladinova, S., Stips, A., Garcia-Gorriz, E., & Macias Moy, D. (2018). Formation and changes of the Black Sea cold intermediate layer. Progress in Oceanography, 167, 11–23. https://doi.org/10.1016/j.pocean.2018.07.002
  • Oğuz, T., & Beşiktepe, S. (1999). Observations on the Rim Current structure, CIW formation and transport in the western Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 46(10), 1733–1753. https://doi.org/10.1016/S0967-0637(99)00028-X
  • Oğuz, T., Çokacar, T., Malanotte-Rizzoli, P., & Ducklow, H. W. (2003). Climatic warming and accompanying changes in the ecological regime of the Black Sea during 1990s. Global Biogeochemical Cycles, 17(3), n/a-n/a. https://doi.org/10.1029/2003GB002031
  • Oğuz, T., Dippner, J. W., & Kaymaz, Z. (2006). Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales. Journal of Marine Systems, 60(3–4), 235–254. https://doi.org/10.1016/j.jmarsys.2005.11.011
  • Oğuz, T., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., Markov, A. A., Özsoy, E., Kotovshchikov, B. B., Eremeev, V. V., & Ünlüata, Ü. (1993a). Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(8), 1597–1612. https://doi.org/10.1016/0967-0637(93)90018-X
  • Oğuz, T., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., Markov, A. A., Özsoy, E., Kotovshchikov, B. B., Eremeev, V. V., & Ünlüata, Ü. (1993b). Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(8), 1597–1612. https://doi.org/10.1016/0967-0637(93)90018-X
  • Özsoy, E., & Ünlüata, Ü. (1997). Oceanography of the Black Sea: A review of some recent results. Earth-Science Reviews, 42(4), 231–272. https://doi.org/10.1016/S0012-8252(97)81859-4
  • Pisano, A., Buongiorno Nardelli, B., Tronconi, C., & Santoleri, R. (2016). The new Mediterranean optimally interpolated pathfinder AVHRR SST Dataset (1982–2012). Remote Sensing of Environment, 176, 107–116. https://doi.org/10.1016/j.rse.2016.01.019
  • Shapiro, G. I., Aleynik, D. L., & Mee, L. D. (2010). Long term trends in the sea surface temperature of the Black Sea. Ocean Science, 6(2), 491–501. https://doi.org/10.5194/os-6-491-2010
  • Shapiro, G. I., Stanichny, S. V., & Stanychna, R. R. (2010). Anatomy of shelf–deep sea exchanges by a mesoscale eddy in the North West Black Sea as derived from remotely sensed data. Remote Sensing of Environment, 114(4), 867–875. https://doi.org/10.1016/j.rse.2009.11.020
  • Stanev, E. V., & Chtirkova, B. (2021). Interannual Change in Mode Waters: Case of the Black Sea. Journal of Geophysical Research: Oceans, 126(2). https://doi.org/10.1029/2020JC016429
  • Stanev, E. V., Peneva, E., & Chtirkova, B. (2019). Climate Change and Regional Ocean Water Mass Disappearance: Case of the Black Sea. Journal of Geophysical Research: Oceans, 124(7), 4803–4819. https://doi.org/10.1029/2019JC015076
  • Sur, H. İ., Özsoy, E., & Ünlüata, Ü. (1994). Boundary current instabilities, upwelling, shelf mixing and eutrophication processes in the Black Sea. Progress in Oceanography, 33(4), 249–302. https://doi.org/10.1016/0079-6611(94)90020-5
  • Tolmazin, D. (1985). Changing Coastal oceanography of the Black Sea. I: Northwestern Shelf. Progress in Oceanography, 15(4), 217–276. https://doi.org/10.1016/0079-6611(85)90038-2
  • Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? Earth’s Future, 1(1), 19–32. https://doi.org/10.1002/2013EF000165
  • von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M., Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet, Y., Dubois, C., Embury, O., Etienne, H., Sotillo, M. G., Garric, G., Gasparin, F., Gutknecht, E., Guinehut, S., Hernandez, F.,Verbrugge, N. (2016). The Copernicus Marine Environment Monitoring Service Ocean State Report. Journal of Operational Oceanography, 9(sup2), s235–s320. https://doi.org/10.1080/1755876X.2016.1273446

Spatial and Temporal Variability of the Surface Temperature in the Black Sea Between 2000-2022

Year 2023, , 158 - 165, 27.12.2023
https://doi.org/10.46384/jmsf.1386973

Abstract

This study presents a comprehensive assessment of the spatio-temporal variability of Sea Surface Temperature (SST) in the Black Sea at monthly to interannual scales, with a focus on understanding its connection to major large-scale atmospheric forcing during the period 2000-2022. Monthly variations of SST in the Black Sea reveal distinct seasonal patterns. The study evaluates the potential impacts of large-scale atmospheric patterns on interannual SST variations using climate indices such as the North Atlantic Oscillation (NAO), East Atlantic/West Russia (EA-WR) and El Niño-Southern Oscillation (ENSO) during the winter months. The results indicated that these large-scale atmospheric oscillations played a substantial role in influencing SST anomalies, with the NAO and EA-WR indices particularly affecting the Black Sea's SST anomalies. The NAO index exhibited negative values during warm winters and positive values during cold winters, with extreme cold and warm winters corresponding to specific years, as observed in 2003, 2006, 2012, 2017 (cold) and 2018, 2020, 2021 (warm). Notably, the relationship between NAO and SST anomalies was not as dominant during 2000-2022. This difference might be explained by the combined influence of NAO and ENSO, which is beyond the scope of this study. The EA-WR pattern was identified as another significant large-scale atmospheric dynamic affecting the Black Sea's SST. Although it explains the cold SST anomalies in certain years, it cannot account for extreme warm SST years. While the influence of ENSO remains somewhat inconclusive for the extreme warm period, the SST pattern between 2016-2022 aligns closely with El Niño events, particularly in 2018 and 2021 when positive SOI index values coincide with warm SST years in the Black Sea.

References

  • Akpınar, A., Fach, B. A., & Oğuz, T. (2017). Observing the subsurface thermal signature of the Black Sea cold intermediate layer with Argo profiling floats. Deep Sea Research Part I: Oceanographic Research Papers, 124, 140–152. https://doi.org/10.1016/j.dsr.2017.04.002
  • Akpınar, A., Sadighrad, E., Fach, B. A., & Arkın, S. (2022). Eddy Induced Cross-Shelf Exchanges in the Black Sea. Remote Sensing, 14(19), 4881. https://doi.org/10.3390/rs14194881
  • Artamonov, Yu. V., Skripaleva, E. A., Kolmak, R. V., & Fedirko, A. V. (2020). Seasonal Variability of Temperature Fronts in the Black Sea from Satellite Data. Izvestiya, Atmospheric and Oceanic Physics, 56(9), 1007–1021. https://doi.org/10.1134/S0001433820090030
  • Belokopytov, V. N. (2011). Interannual variations of the renewal of waters of the cold intermediate layer in the Black Sea for the last decades. Physical Oceanography, 20(5), 347–355. https://doi.org/10.1007/s11110-011-9090-x
  • Bulgin, C. E., Merchant, C. J., & Ferreira, D. (2020). Tendencies, variability and persistence of sea surface temperature anomalies. Scientific Reports, 10(1), 7986. https://doi.org/10.1038/s41598-020-64785-9
  • Capet, A., Barth, A., Beckers, J.-M., & Marilaure, G. (2012). Interannual variability of Black Sea’s hydrodynamics and connection to atmospheric patterns. Deep Sea Research Part II: Topical Studies in Oceanography, 77–80, 128–142. https://doi.org/10.1016/j.dsr2.2012.04.010
  • Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., & Grégoire, M. (2016). Decline of the Black Sea oxygen inventory. Biogeosciences, 13(4), 1287–1297. https://doi.org/10.5194/bg-13-1287-2016
  • Capet, A., Vandenbulcke, L., & Grégoire, M. (2020). A new intermittent regime of convective ventilation threatens the Black Sea oxygenation status. Biogeosciences, 17(24), 6507–6525. https://doi.org/10.5194/bg-17-6507-2020
  • Çokacar, T., Oğuz, T., & Kubilay, N. (2004). Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 51(8). https://doi.org/10.1016/j.dsr.2004.03.007
  • Efimov, V. V., & Komarovskaya, O. I. (2018). Spatial Structure and Recurrence of Large-Scale Temperature Anomalies of the Sea Surface Temperature in the Black Sea. Oceanology, 58(2), 155–163. https://doi.org/10.1134/S0001437018020030
  • Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S.-P., Kosaka, Y., & Swart, N. C. (2016). Making sense of the early-2000s warming slowdown. Nature Climate Change, 6(3), 224–228. https://doi.org/10.1038/nclimate2938
  • Ginzburg, A. I., Kostianoy, A. G., Nezlin, N. P., Soloviev, D. M., & Stanichny, S. V. (2002). Anticyclonic eddies in the northwestern Black Sea. Journal of Marine Systems, 32(1–3), 91–106. https://doi.org/10.1016/S0924-7963(02)00035-0
  • Ginzburg, A. I., Kostianoy, A. G., Serykh, I. V., & Lebedev, S. A. (2021). Climate Change in the Hydrometeorological Parameters of the Black and Azov Seas (1980–2020). Oceanology, 61(6), 745–756. https://doi.org/10.1134/S0001437021060060
  • Ginzburg, A. I., Kostianoy, A. G., & Sheremet, N. A. (2004). Seasonal and interannual variability of the Black Sea surface temperature as revealed from satellite data (1982–2000). Journal of Marine Systems, 52(1–4), 33–50. https://doi.org/10.1016/j.jmarsys.2004.05.002
  • Ginzburg, A. I., Kostianoy, A. G., & Sheremet, N. A. (2007). Sea Surface Temperature Variability. In The Black Sea Environment (pp. 255–275). Springer Berlin Heidelberg. https://doi.org/10.1007/698_5_067
  • Gregg, M. C. (2005). Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre. Geophysical Research Letters, 32(3), L03604. https://doi.org/10.1029/2004GL021580
  • Kazmin, A. S., & Zatsepin, A. G. (2007). Long-term variability of surface temperature in the Black Sea, and its connection with the large-scale atmospheric forcing. Journal of Marine Systems, 68(1–2), 293–301. https://doi.org/10.1016/j.jmarsys.2007.01.002
  • Korotaev, G. (2003a). Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. Journal of Geophysical Research, 108(C4), 3122. https://doi.org/10.1029/2002JC001508
  • Korotaev, G. (2003b). Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. Journal of Geophysical Research, 108(C4), 3122. https://doi.org/10.1029/2002JC001508
  • Korotaev, G., Oğuz, T., & Riser, S. (2006). Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats. Deep Sea Research Part II: Topical Studies in Oceanography, 53(17–19), 1901–1910. https://doi.org/10.1016/j.dsr2.2006.04.017
  • Kubryakova, E. A., Kubryakov, A. A., & Stanichny, S. V. (2018). Impact of Winter Cooling on Water Vertical Entrainment and Intensity of Phytoplankton Bloom in the Black Sea. Morskoy Gidrofizicheskiy Zhurnal, 3. https://doi.org/10.22449/0233-7584-2018-3-206-222
  • Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler, E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., & Donlon, C. (2019). Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Scientific Data, 6(1), 223. https://doi.org/10.1038/s41597-019-0236-x
  • Mikaelyan, A. S., Silkin, V. A., & Pautova, L. A. (2011). Coccolithophorids in the Black Sea: Their interannual and long-term changes. Oceanology, 51(1), 39–48. https://doi.org/10.1134/S0001437011010127
  • Miladinova, S., Stips, A., Garcia‐Gorriz, E., & Macias Moy, D. (2017). Black <scp>S</scp> ea thermohaline properties: Long‐term trends and variations. Journal of Geophysical Research: Oceans, 122(7), 5624–5644. https://doi.org/10.1002/2016JC012644
  • Miladinova, S., Stips, A., Garcia-Gorriz, E., & Macias Moy, D. (2018). Formation and changes of the Black Sea cold intermediate layer. Progress in Oceanography, 167, 11–23. https://doi.org/10.1016/j.pocean.2018.07.002
  • Oğuz, T., & Beşiktepe, S. (1999). Observations on the Rim Current structure, CIW formation and transport in the western Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 46(10), 1733–1753. https://doi.org/10.1016/S0967-0637(99)00028-X
  • Oğuz, T., Çokacar, T., Malanotte-Rizzoli, P., & Ducklow, H. W. (2003). Climatic warming and accompanying changes in the ecological regime of the Black Sea during 1990s. Global Biogeochemical Cycles, 17(3), n/a-n/a. https://doi.org/10.1029/2003GB002031
  • Oğuz, T., Dippner, J. W., & Kaymaz, Z. (2006). Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales. Journal of Marine Systems, 60(3–4), 235–254. https://doi.org/10.1016/j.jmarsys.2005.11.011
  • Oğuz, T., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., Markov, A. A., Özsoy, E., Kotovshchikov, B. B., Eremeev, V. V., & Ünlüata, Ü. (1993a). Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(8), 1597–1612. https://doi.org/10.1016/0967-0637(93)90018-X
  • Oğuz, T., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., Markov, A. A., Özsoy, E., Kotovshchikov, B. B., Eremeev, V. V., & Ünlüata, Ü. (1993b). Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(8), 1597–1612. https://doi.org/10.1016/0967-0637(93)90018-X
  • Özsoy, E., & Ünlüata, Ü. (1997). Oceanography of the Black Sea: A review of some recent results. Earth-Science Reviews, 42(4), 231–272. https://doi.org/10.1016/S0012-8252(97)81859-4
  • Pisano, A., Buongiorno Nardelli, B., Tronconi, C., & Santoleri, R. (2016). The new Mediterranean optimally interpolated pathfinder AVHRR SST Dataset (1982–2012). Remote Sensing of Environment, 176, 107–116. https://doi.org/10.1016/j.rse.2016.01.019
  • Shapiro, G. I., Aleynik, D. L., & Mee, L. D. (2010). Long term trends in the sea surface temperature of the Black Sea. Ocean Science, 6(2), 491–501. https://doi.org/10.5194/os-6-491-2010
  • Shapiro, G. I., Stanichny, S. V., & Stanychna, R. R. (2010). Anatomy of shelf–deep sea exchanges by a mesoscale eddy in the North West Black Sea as derived from remotely sensed data. Remote Sensing of Environment, 114(4), 867–875. https://doi.org/10.1016/j.rse.2009.11.020
  • Stanev, E. V., & Chtirkova, B. (2021). Interannual Change in Mode Waters: Case of the Black Sea. Journal of Geophysical Research: Oceans, 126(2). https://doi.org/10.1029/2020JC016429
  • Stanev, E. V., Peneva, E., & Chtirkova, B. (2019). Climate Change and Regional Ocean Water Mass Disappearance: Case of the Black Sea. Journal of Geophysical Research: Oceans, 124(7), 4803–4819. https://doi.org/10.1029/2019JC015076
  • Sur, H. İ., Özsoy, E., & Ünlüata, Ü. (1994). Boundary current instabilities, upwelling, shelf mixing and eutrophication processes in the Black Sea. Progress in Oceanography, 33(4), 249–302. https://doi.org/10.1016/0079-6611(94)90020-5
  • Tolmazin, D. (1985). Changing Coastal oceanography of the Black Sea. I: Northwestern Shelf. Progress in Oceanography, 15(4), 217–276. https://doi.org/10.1016/0079-6611(85)90038-2
  • Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? Earth’s Future, 1(1), 19–32. https://doi.org/10.1002/2013EF000165
  • von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M., Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet, Y., Dubois, C., Embury, O., Etienne, H., Sotillo, M. G., Garric, G., Gasparin, F., Gutknecht, E., Guinehut, S., Hernandez, F.,Verbrugge, N. (2016). The Copernicus Marine Environment Monitoring Service Ocean State Report. Journal of Operational Oceanography, 9(sup2), s235–s320. https://doi.org/10.1080/1755876X.2016.1273446
There are 40 citations in total.

Details

Primary Language English
Subjects Physical Oceanography
Journal Section Research Articles
Authors

Tülay Çokacar 0000-0003-3189-082X

Early Pub Date December 27, 2023
Publication Date December 27, 2023
Submission Date November 6, 2023
Acceptance Date December 15, 2023
Published in Issue Year 2023

Cite

APA Çokacar, T. (2023). Spatial and Temporal Variability of the Surface Temperature in the Black Sea Between 2000-2022. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 6(2), 158-165. https://doi.org/10.46384/jmsf.1386973