Review
BibTex RIS Cite

Taze Balığın Raf Ömrünü Uzatmak için Termal Olmayan İşleme Teknikleri

Year 2025, Volume: 8 Issue: 2, 224 - 232, 22.12.2025
https://doi.org/10.46384/jmsf.1775344

Abstract

Deniz ürünleri sektörü, müşterilerin taze, sağlıklı ve besleyici balık beklentilerini karşılamak için ürün kalitesini korumak ve raf ömrünü uzatmak konusunda önemli engellerle karşı karşıyadır. Geleneksel olarak kullanılan soğuk depolama veya dondurma teknikleri, balığın raf ömrünü belirli ölçüde uzatsa da mikrobiyal, enzimatik ve oksidatif bozulmaları istenilen düzeyde durduramadığı için yetersiz kalmaktadır. Bu nedenle, balığın kalitesini korumak ve gıda güvenliğini sağlamak için çeşitli termal olmayan yaklaşımlar kullanılmakta ve son yıllarda sürekli olarak geliştirilmektedir. Bu derlemede, yüksek basınçlı işleme (YBİ), soğuk plazma (SP), darbeli elektrik alan (DEA), ışınlama, aktif ambalajlama (AA) ve ultrases gibi yeni termal olmayan gıda işleme teknolojilerinin prensipleri ve antimikrobiyal etki mekanizmaları açıklanmakta ve özellikle mikrobiyal inaktivasyon ve fizikokimyasal özellikler açısından çeşitli balık türlerinde bu teknolojilerin uygulamalarından bahsedilmektedir. Ayrıca, bu teknolojilerin avantajları ve dezavantajları da incelenmektedir.

Ethical Statement

Bu çalışma için etik kurul iznine gerek yoktur.

Supporting Institution

Destekleyen Kurum Yoktur.

Thanks

Teşekkür kısmı yoktur.

References

  • Abad, V., Alejandre, M., Hernández-Fernández, E., Raso, J., Cebrián, G., & Álvarez-Lanzarote, I. (2023). Evaluation of pulsed electric fields (PEF) parameters in the inactivation of anisakis larvae in saline solution and hake meat. Foods, 12(2), 264.
  • Aday, M. S. (2021). Meyve ve sebzelerde aktif ambalajlama teknolojisinin kullanımı. Avrupa Bilim ve Teknoloji Dergisi, (21), 122-130.
  • Ali, A., Wei, S., Ali, A., Khan, I., Sun, Q., Xia, Q., Wang, Z., Han, Z., Liu, Y., & Liu, S. (2022). Research progress on nutritional value, preservation and processing of fish—A review. Foods, 11(22), 3669.
  • Amaral, R. A., Pinto, C. A., Lima, V., Tavares, J., Martins, A. P., Fidalgo, L. G., Silva, A. M., Gil, M. M., Teixeira, P., & Barbosa, J. (2021). Chemical-Based methodologies to extend the shelf life of fresh fish—A review. Foods, 10(10), 2300.
  • Ambrosio, R. L., Gogliettino, M., Agrillo, B., Proroga, Y. T., Balestrieri, M., Gratino, L., Cristiano, D., Palmieri, G., & Anastasio, A. (2022). An active peptide-based packaging system to improve the freshness and safety of fish products: A case study. Foods, 11(3), 338.
  • Arvanitoyannis, I. S., Stratakos, A., & Mente, E. (2008). Impact of irradiation on fish and seafood shelf life: a comprehensive review of applications and irradiation detection. Critical Reviews in Food Science and Nutrition, 49(1), 68-112.
  • Bariya, A. R., Rathod, N. B., Patel, A. S., Nayak, J. K. B., Ranveer, R. C., Hashem, A., AbdAllah, E. F., Ozogul, F., Jambrak, A. R., & Rocha, J. M. (2023). Recent developments in ultrasound approach for preservation of animal origin foods. Ultrasonics Sonochemistry, 101, 106676.
  • Bharatbhai, P. S., & Shyni, K. (2024). The effect of high-pressure processing on quality of seafood meat-a review. Brazilian Journal of Development, 10(2), e67342-e67342.
  • Castrica, M., Pavlovic, R., Balzaretti, C. M., Curone, G., Brecchia, G., Copelotti, E., Panseri, S., Pessina, D., Arnoldi, C., & Chiesa, L. M. (2021). Effect of high-pressure processing on physico-chemical, microbiological and sensory traits in fresh fish fillets (Salmo salar and Pleuronectes platessa). Foods, 10(8), 1775.
  • Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods, 11(1), 122.
  • Chéret, R., Delbarre-Ladrat, C., de Lamballerie-Anton, M., & Verrez-Bagnis, V. (2005). High-pressure effects on the proteolytic enzymes of sea bass (Dicentrarchus labrax L.) fillets. Journal of Agricultural and Food Chemistry, 53(10), 3969-3973.
  • Cioca, A.-A., Dan, S. D., Lupău, V. M., Colobatiu, L. M., & Mihaiu, M. (2018). The effect of high pressure processing on major structural proteins of rainbow trout fish fillets. Studia Universitatis Babes-Bolyai Chemia, 63(4), 129-136.
  • De Abreu, D. P., Losada, P. P., Maroto, J., & Cruz, J. (2010). Evaluation of the effectiveness of a new active packaging film containing natural antioxidants (from barley husks) that retard lipid damage in frozen Atlantic salmon (Salmo salar L.). Food Research International, 43(5), 1277-1282.
  • Edae, B. (2023). Food irradiation an effective technology for food safety and security. Food Science & Nutrition Technology, 8(4).
  • Erkan, N., Günlü, A., & Genç, İ. Y. (2014). Alternative seafood preservation technologies: ionizing radiation and high pressure processing. Journal of FisheriesSciences.com, 8(3), 238-251.
  • Ganjeh, A. M., Pinto, C. A., Casal, S., & Saraiva, J. A. (2024). Potential of electric and pressure-based techniques for the inactivation of microorganisms in fresh fish. Food Bioscience, 61, 104537.
  • Ismaiel, L., Nartea, A., Fanesi, B., Lucci, P., Pacetti, D., Jaeger, H., & Schottroff, F. (2025). Effect of High-Pressure Processing on Color, Texture and Volatile Profile During Sardine Refrigeration. Foods, 14(2), 329.
  • Jeyakumari, A., Murthy, L. N., Visnuvinayagam, S., Sarma, K., Rawat, K., & Khader, S. A. (2023). Effect of electron beam irradiation on the quality of vacuum-packed, chilled-stored tilapia fish chunks. Indian Journal of Fisheries, 70(2), 0970-6011.
  • Kamau, P. G., Cruz-Romero, M., Alzate, P., Morris, M., & Kerry, J. (2025). Active packaging containing natural antimicrobials as a potential and innovative technology to extend shelf-life of fish products–A review. Food Packaging and Shelf Life, 49, 101500.
  • Kaur, S., Kumar, Y., Singh, V., Kaur, J., & Panesar, P. S. (2024). Cold plasma technology: Reshaping food preservation and safety. Food Control, 163, 110537.
  • Lee, D., Tang, J., Lee, S. H., & Jun, S. (2024). Effect of oscillating magnetic fields (OMFs) and pulsed electric fields (PEFs) on supercooling preservation of atlantic salmon (Salmo salar L.) fillets. Foods, 13(16), 2525.
  • Mohamed, E. F., Hafez, A. E.-S. E., Seadawy, H. G., Elrefai, M. F., Abdallah, K., El Bayomi, R. M., Mansour, A. T., Bendary, M. M., Izmirly, A. M., & Baothman, B. K. (2023). Irradiation as a promising Technology to improve bacteriological and physicochemical quality of fish. Microorganisms, 11(5), 1105.
  • Mohan, C., Ravishankar, C., & Gopal, T. S. (2010). Active packaging of fishery products: a review. Fishery Technology, 47(1), 1-18.
  • Mohan, C., Ravishankar, C., Gopal, T. S., & Kumar, K. A. (2009). Nucleotide breakdown products of seer fish (Scomberomorus commerson) steaks stored in O2 scavenger packs during chilled storage. Innovative Food Science & Emerging Technologies, 10(2), 272-278.
  • Nanou, E., Kotsiri, M., Kogiannou, D., Katsouli, M., & Grigorakis, K. (2023). Consumer perception of freshness and volatile composition of fresh gilthead seabream and seabass in active packaging with and without CO2-emitting pads. Foods, 12(3), 505.
  • Olatunde, O. O., & Benjakul, S. (2018). Nonthermal processes for shelf‐life extension of seafoods: A revisit. Comprehensive Reviews in Food Science and Food Safety, 17(4), 892-904.
  • Olgun, Ç., & Diler, A. (2025). Effect of Ultrasound Applications on Physico-Chemical, Sensory, and Microbiological Quality of Rainbow Trout (Oncorhynchus mykiss W.). Acta Aquatica Turcica, 21(1), 74-88.
  • Opara, U. L., Fadiji, T., Caleb, O. J., & Oluwole, A. O. (2022). Effects of modified atmosphere packaging, storage temperature, and absorbent pads on the quality of fresh cape hake fish fillets. Coatings, 12(3), 310.
  • Pedrós-Garrido, S., Condón-Abanto, S., Beltrán, J., Lyng, J., Brunton, N., Bolton, D., & Whyte, P. (2017). Assessment of high intensity ultrasound for surface decontamination of salmon (S. salar), mackerel (S. scombrus), cod (G. morhua) and hake (M. merluccius) fillets, and its impact on fish quality. Innovative Food Science & Emerging Technologies, 41, 64-70.
  • Prempeh, N. Y. A., Nunekpeku, X., Murugesan, A., & Li, H. (2025). Ultrasound in the Food Industry: Mechanisms and Applications for Non-Invasive Texture and Quality Analysis. Foods, 14(12), 2057.
  • Rabiepour, A., Zahmatkesh, F., & Babakhani, A. (2024). Preservation techniques to increase the shelf life of seafood products: An overview. Journal of Food Engineering and Technology, 13(1), 1-24.
  • Rahmanifarah, K., Mahmoudian, M., & Mahmoudi Eskandarabadi, S. (2025). Fish active packaging with ZnO/Fe-MMT nanoparticles. Scientific Reports, 15(1), 3623.
  • Rathod, N. B., Ranveer, R. C., Bhagwat, P. K., Ozogul, F., Benjakul, S., Pillai, S., & Annapure, U. S. (2021). Cold plasma for the preservation of aquatic food products: An overview. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4407-4425.
  • Romulo, A. (2021). The impact of high pressure processing treatment on microbial inactivation of seafood—A review. Food Res, 5(2), 38-44.
  • Rosnes, J. T., Skåra, T., & Skipnes, D. (2011). Recent advances in minimal heat processing of fish: effects on microbiological activity and safety. Food and bioprocess technology, 4(6), 833-848.
  • Russo, G. L., Langellotti, A. L., Torrieri, E., & Masi, P. (2024). Emerging technologies in seafood processing: An overview of innovations reshaping the aquatic food industry. Comprehensive Reviews in Food Science and Food Safety, 23(1), e13281.
  • Spanou, A., Tzamarias, A. E., Ladakis, D., Koutinas, A., & Tsironi, T. (2024). In‐package cold atmospheric plasma processing for shelf‐life extension of gilthead seabream (Sparus aurata) fillets. Journal of Food Science, 89(8), 4714-4729.
  • Speranza, B., Racioppo, A., Bevilacqua, A., Buzzo, V., Marigliano, P., Mocerino, E., Scognamiglio, R., Corbo, M. R., Scognamiglio, G., & Sinigaglia, M. (2021). Innovative preservation methods improving the quality and safety of fish products: Beneficial effects and limits. Foods, 10(11), 2854.
  • Subrahmanyam, K., Gul, K., Sehrawat, R., Tiwari, B. K., & Sahoo, S. (2024). Cold plasma-mediated inactivation of microorganisms for the shelf-life extension of animal-based foods: Efficiency, mechanism of inactivation, and impact on quality attributes. Food Control, 162, 110464.
  • Tosun, Ş. Y., Kartal, S., Akan, T., Mol, S., Coşansu, S., Üçok, D., Ulusoy, Ş., Doğruyol, H., & Bostan, K. (2024). Innovative Pathogen Reduction in Exported Sea Bass Through Atmospheric Cold Plasma Technology. Foods, 13(20), 3290.
  • Tsevdou, M., Dimopoulos, G., Limnaios, A., Semenoglou, I., Tsironi, T., & Taoukis, P. (2023). High pressure processing under mild conditions for bacterial mitigation and shelf life extension of European Sea bass fillets. Applied Sciences, 13(6), 3845.
  • Ugalde-Torres, A., Ocaño-Higuera, V. M., Ruíz-Cruz, S., Suárez-Jiménez, G. M., Torres-Arreola, W., Montoya-Camacho, N., & Marquez-Rios, E. (2024). The Effect of High Intensity Ultrasound on the Quality and Shelf Life of Tilapia (Oreochromis niloticus) Muscle. Processes, 12(7), 1441.
  • Uikey, M., Bojayanaik, M., Ganachari, J., Fernandes, D. J., Banavath, S. N., Naik, S. N. C., Dnyanoba, S. C., Alandur, V. S., & Hiriyur, S. (2024). Combined Effect of Gamma Irradiation and Low Temperature Storage on the Microbial and Bio-chemical Quality of Sutchi Cat Fish (Pangasius hypophthalmus). European Journal of Nutrition and Food Safety, 16(12), 189-201.
  • Ulusoy, Ş., Akan, T., Kartal, S., Üçok, D., Tosun, Ş. Y., Doğruyol, H., Coşansu, S., Bostan, K., & Mol, S. (2024). Atmospheric Cold Plasma to Maintain Sea Bass Quality: An Opportunity for International Fish Trade. Processes, 12(11), 2318.
  • Venugopal, V., Doke, S., & Thomas, P. (1999). Radiation processing to improve the quality of fishery products. Critical Reviews in Food Science and Nutrition, 39(5), 391-440.
  • Wang, J., Wang, Q., Xu, L., & Sun, D.-W. (2022). Effects of extremely low frequency pulsed electric field (ELF-PEF) on the quality and microstructure of tilapia during cold storage. LWT, 169, 113937.
  • Xie, Y., Zhang, J., Zhang, P., Regenstein, J. M., Liu, D., & Zhou, P. (2024). Improving the microbiological safety and quality of aquatic products using nonthermal processing. Comprehensive Reviews in Food Science and Food Safety, 23(3), e13368.
  • Zhao, Y. M., de Alba, M., Sun, D. W., & Tiwari, B. (2019). Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Critical reviews in food science and nutrition, 59(5), 728-742.
  • Zheng, Z., Jin, Y., Zhang, L., Xu, X., & Yang, N. (2024). Inactivation of microorganisms in foods by electric field processing: A review. Journal of Agriculture and Food Research, 16, 101109.
  • Zura-Bravo, L., Solís, D., Masztalerz, K., Tabilo-Munizaga, G., Pérez-Won, M., & Lemus-Mondaca, R. (2023). High Hydrostatic Pressure Applied to Pre-and PostRigor Jack Mackerel (Trachurus murphyi) and the Assessment of Their Physicochemical Properties under Cold Storage.

Non-Thermal Processing Techniques for Extending Shelf-Life of Fresh Fish

Year 2025, Volume: 8 Issue: 2, 224 - 232, 22.12.2025
https://doi.org/10.46384/jmsf.1775344

Abstract

The seafood sector has substantial obstacles in maintaining product quality and prolonging shelf-life to satisfy consumer expectations for fresh, healthy, and nutritious fish. Traditionally used cold storage or freezing techniques extend the shelf life of fish to a certain extent, but they are insufficient because they cannot stop microbial, enzymatic, and oxidative deterioration to the desired level. Therefore, to guarantee safety and maintain the quality of fish, various non-thermal approaches have been used and are undergoing constant development in recent years. This review describes the principles and antimicrobial effects of new non-thermal food processing technologies such as high-pressure processing (HPP), cold plasma (CP), pulsed electric field (PEF), irradiation, active packaging (AP), and ultrasound. It discusses the principles and antimicrobial mechanisms of action of these new non-thermal food processing technologies and specifically addresses their applications in various fish species in terms of microbial inactivation and physicochemical properties. Furthermore, the benefits along with the drawbacks of these technologies are also examined.

Ethical Statement

Ethics committee approval is not required for this study.

Supporting Institution

There is no supporting institution.

Thanks

There is no acknowledgement section.

References

  • Abad, V., Alejandre, M., Hernández-Fernández, E., Raso, J., Cebrián, G., & Álvarez-Lanzarote, I. (2023). Evaluation of pulsed electric fields (PEF) parameters in the inactivation of anisakis larvae in saline solution and hake meat. Foods, 12(2), 264.
  • Aday, M. S. (2021). Meyve ve sebzelerde aktif ambalajlama teknolojisinin kullanımı. Avrupa Bilim ve Teknoloji Dergisi, (21), 122-130.
  • Ali, A., Wei, S., Ali, A., Khan, I., Sun, Q., Xia, Q., Wang, Z., Han, Z., Liu, Y., & Liu, S. (2022). Research progress on nutritional value, preservation and processing of fish—A review. Foods, 11(22), 3669.
  • Amaral, R. A., Pinto, C. A., Lima, V., Tavares, J., Martins, A. P., Fidalgo, L. G., Silva, A. M., Gil, M. M., Teixeira, P., & Barbosa, J. (2021). Chemical-Based methodologies to extend the shelf life of fresh fish—A review. Foods, 10(10), 2300.
  • Ambrosio, R. L., Gogliettino, M., Agrillo, B., Proroga, Y. T., Balestrieri, M., Gratino, L., Cristiano, D., Palmieri, G., & Anastasio, A. (2022). An active peptide-based packaging system to improve the freshness and safety of fish products: A case study. Foods, 11(3), 338.
  • Arvanitoyannis, I. S., Stratakos, A., & Mente, E. (2008). Impact of irradiation on fish and seafood shelf life: a comprehensive review of applications and irradiation detection. Critical Reviews in Food Science and Nutrition, 49(1), 68-112.
  • Bariya, A. R., Rathod, N. B., Patel, A. S., Nayak, J. K. B., Ranveer, R. C., Hashem, A., AbdAllah, E. F., Ozogul, F., Jambrak, A. R., & Rocha, J. M. (2023). Recent developments in ultrasound approach for preservation of animal origin foods. Ultrasonics Sonochemistry, 101, 106676.
  • Bharatbhai, P. S., & Shyni, K. (2024). The effect of high-pressure processing on quality of seafood meat-a review. Brazilian Journal of Development, 10(2), e67342-e67342.
  • Castrica, M., Pavlovic, R., Balzaretti, C. M., Curone, G., Brecchia, G., Copelotti, E., Panseri, S., Pessina, D., Arnoldi, C., & Chiesa, L. M. (2021). Effect of high-pressure processing on physico-chemical, microbiological and sensory traits in fresh fish fillets (Salmo salar and Pleuronectes platessa). Foods, 10(8), 1775.
  • Chavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods, 11(1), 122.
  • Chéret, R., Delbarre-Ladrat, C., de Lamballerie-Anton, M., & Verrez-Bagnis, V. (2005). High-pressure effects on the proteolytic enzymes of sea bass (Dicentrarchus labrax L.) fillets. Journal of Agricultural and Food Chemistry, 53(10), 3969-3973.
  • Cioca, A.-A., Dan, S. D., Lupău, V. M., Colobatiu, L. M., & Mihaiu, M. (2018). The effect of high pressure processing on major structural proteins of rainbow trout fish fillets. Studia Universitatis Babes-Bolyai Chemia, 63(4), 129-136.
  • De Abreu, D. P., Losada, P. P., Maroto, J., & Cruz, J. (2010). Evaluation of the effectiveness of a new active packaging film containing natural antioxidants (from barley husks) that retard lipid damage in frozen Atlantic salmon (Salmo salar L.). Food Research International, 43(5), 1277-1282.
  • Edae, B. (2023). Food irradiation an effective technology for food safety and security. Food Science & Nutrition Technology, 8(4).
  • Erkan, N., Günlü, A., & Genç, İ. Y. (2014). Alternative seafood preservation technologies: ionizing radiation and high pressure processing. Journal of FisheriesSciences.com, 8(3), 238-251.
  • Ganjeh, A. M., Pinto, C. A., Casal, S., & Saraiva, J. A. (2024). Potential of electric and pressure-based techniques for the inactivation of microorganisms in fresh fish. Food Bioscience, 61, 104537.
  • Ismaiel, L., Nartea, A., Fanesi, B., Lucci, P., Pacetti, D., Jaeger, H., & Schottroff, F. (2025). Effect of High-Pressure Processing on Color, Texture and Volatile Profile During Sardine Refrigeration. Foods, 14(2), 329.
  • Jeyakumari, A., Murthy, L. N., Visnuvinayagam, S., Sarma, K., Rawat, K., & Khader, S. A. (2023). Effect of electron beam irradiation on the quality of vacuum-packed, chilled-stored tilapia fish chunks. Indian Journal of Fisheries, 70(2), 0970-6011.
  • Kamau, P. G., Cruz-Romero, M., Alzate, P., Morris, M., & Kerry, J. (2025). Active packaging containing natural antimicrobials as a potential and innovative technology to extend shelf-life of fish products–A review. Food Packaging and Shelf Life, 49, 101500.
  • Kaur, S., Kumar, Y., Singh, V., Kaur, J., & Panesar, P. S. (2024). Cold plasma technology: Reshaping food preservation and safety. Food Control, 163, 110537.
  • Lee, D., Tang, J., Lee, S. H., & Jun, S. (2024). Effect of oscillating magnetic fields (OMFs) and pulsed electric fields (PEFs) on supercooling preservation of atlantic salmon (Salmo salar L.) fillets. Foods, 13(16), 2525.
  • Mohamed, E. F., Hafez, A. E.-S. E., Seadawy, H. G., Elrefai, M. F., Abdallah, K., El Bayomi, R. M., Mansour, A. T., Bendary, M. M., Izmirly, A. M., & Baothman, B. K. (2023). Irradiation as a promising Technology to improve bacteriological and physicochemical quality of fish. Microorganisms, 11(5), 1105.
  • Mohan, C., Ravishankar, C., & Gopal, T. S. (2010). Active packaging of fishery products: a review. Fishery Technology, 47(1), 1-18.
  • Mohan, C., Ravishankar, C., Gopal, T. S., & Kumar, K. A. (2009). Nucleotide breakdown products of seer fish (Scomberomorus commerson) steaks stored in O2 scavenger packs during chilled storage. Innovative Food Science & Emerging Technologies, 10(2), 272-278.
  • Nanou, E., Kotsiri, M., Kogiannou, D., Katsouli, M., & Grigorakis, K. (2023). Consumer perception of freshness and volatile composition of fresh gilthead seabream and seabass in active packaging with and without CO2-emitting pads. Foods, 12(3), 505.
  • Olatunde, O. O., & Benjakul, S. (2018). Nonthermal processes for shelf‐life extension of seafoods: A revisit. Comprehensive Reviews in Food Science and Food Safety, 17(4), 892-904.
  • Olgun, Ç., & Diler, A. (2025). Effect of Ultrasound Applications on Physico-Chemical, Sensory, and Microbiological Quality of Rainbow Trout (Oncorhynchus mykiss W.). Acta Aquatica Turcica, 21(1), 74-88.
  • Opara, U. L., Fadiji, T., Caleb, O. J., & Oluwole, A. O. (2022). Effects of modified atmosphere packaging, storage temperature, and absorbent pads on the quality of fresh cape hake fish fillets. Coatings, 12(3), 310.
  • Pedrós-Garrido, S., Condón-Abanto, S., Beltrán, J., Lyng, J., Brunton, N., Bolton, D., & Whyte, P. (2017). Assessment of high intensity ultrasound for surface decontamination of salmon (S. salar), mackerel (S. scombrus), cod (G. morhua) and hake (M. merluccius) fillets, and its impact on fish quality. Innovative Food Science & Emerging Technologies, 41, 64-70.
  • Prempeh, N. Y. A., Nunekpeku, X., Murugesan, A., & Li, H. (2025). Ultrasound in the Food Industry: Mechanisms and Applications for Non-Invasive Texture and Quality Analysis. Foods, 14(12), 2057.
  • Rabiepour, A., Zahmatkesh, F., & Babakhani, A. (2024). Preservation techniques to increase the shelf life of seafood products: An overview. Journal of Food Engineering and Technology, 13(1), 1-24.
  • Rahmanifarah, K., Mahmoudian, M., & Mahmoudi Eskandarabadi, S. (2025). Fish active packaging with ZnO/Fe-MMT nanoparticles. Scientific Reports, 15(1), 3623.
  • Rathod, N. B., Ranveer, R. C., Bhagwat, P. K., Ozogul, F., Benjakul, S., Pillai, S., & Annapure, U. S. (2021). Cold plasma for the preservation of aquatic food products: An overview. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4407-4425.
  • Romulo, A. (2021). The impact of high pressure processing treatment on microbial inactivation of seafood—A review. Food Res, 5(2), 38-44.
  • Rosnes, J. T., Skåra, T., & Skipnes, D. (2011). Recent advances in minimal heat processing of fish: effects on microbiological activity and safety. Food and bioprocess technology, 4(6), 833-848.
  • Russo, G. L., Langellotti, A. L., Torrieri, E., & Masi, P. (2024). Emerging technologies in seafood processing: An overview of innovations reshaping the aquatic food industry. Comprehensive Reviews in Food Science and Food Safety, 23(1), e13281.
  • Spanou, A., Tzamarias, A. E., Ladakis, D., Koutinas, A., & Tsironi, T. (2024). In‐package cold atmospheric plasma processing for shelf‐life extension of gilthead seabream (Sparus aurata) fillets. Journal of Food Science, 89(8), 4714-4729.
  • Speranza, B., Racioppo, A., Bevilacqua, A., Buzzo, V., Marigliano, P., Mocerino, E., Scognamiglio, R., Corbo, M. R., Scognamiglio, G., & Sinigaglia, M. (2021). Innovative preservation methods improving the quality and safety of fish products: Beneficial effects and limits. Foods, 10(11), 2854.
  • Subrahmanyam, K., Gul, K., Sehrawat, R., Tiwari, B. K., & Sahoo, S. (2024). Cold plasma-mediated inactivation of microorganisms for the shelf-life extension of animal-based foods: Efficiency, mechanism of inactivation, and impact on quality attributes. Food Control, 162, 110464.
  • Tosun, Ş. Y., Kartal, S., Akan, T., Mol, S., Coşansu, S., Üçok, D., Ulusoy, Ş., Doğruyol, H., & Bostan, K. (2024). Innovative Pathogen Reduction in Exported Sea Bass Through Atmospheric Cold Plasma Technology. Foods, 13(20), 3290.
  • Tsevdou, M., Dimopoulos, G., Limnaios, A., Semenoglou, I., Tsironi, T., & Taoukis, P. (2023). High pressure processing under mild conditions for bacterial mitigation and shelf life extension of European Sea bass fillets. Applied Sciences, 13(6), 3845.
  • Ugalde-Torres, A., Ocaño-Higuera, V. M., Ruíz-Cruz, S., Suárez-Jiménez, G. M., Torres-Arreola, W., Montoya-Camacho, N., & Marquez-Rios, E. (2024). The Effect of High Intensity Ultrasound on the Quality and Shelf Life of Tilapia (Oreochromis niloticus) Muscle. Processes, 12(7), 1441.
  • Uikey, M., Bojayanaik, M., Ganachari, J., Fernandes, D. J., Banavath, S. N., Naik, S. N. C., Dnyanoba, S. C., Alandur, V. S., & Hiriyur, S. (2024). Combined Effect of Gamma Irradiation and Low Temperature Storage on the Microbial and Bio-chemical Quality of Sutchi Cat Fish (Pangasius hypophthalmus). European Journal of Nutrition and Food Safety, 16(12), 189-201.
  • Ulusoy, Ş., Akan, T., Kartal, S., Üçok, D., Tosun, Ş. Y., Doğruyol, H., Coşansu, S., Bostan, K., & Mol, S. (2024). Atmospheric Cold Plasma to Maintain Sea Bass Quality: An Opportunity for International Fish Trade. Processes, 12(11), 2318.
  • Venugopal, V., Doke, S., & Thomas, P. (1999). Radiation processing to improve the quality of fishery products. Critical Reviews in Food Science and Nutrition, 39(5), 391-440.
  • Wang, J., Wang, Q., Xu, L., & Sun, D.-W. (2022). Effects of extremely low frequency pulsed electric field (ELF-PEF) on the quality and microstructure of tilapia during cold storage. LWT, 169, 113937.
  • Xie, Y., Zhang, J., Zhang, P., Regenstein, J. M., Liu, D., & Zhou, P. (2024). Improving the microbiological safety and quality of aquatic products using nonthermal processing. Comprehensive Reviews in Food Science and Food Safety, 23(3), e13368.
  • Zhao, Y. M., de Alba, M., Sun, D. W., & Tiwari, B. (2019). Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Critical reviews in food science and nutrition, 59(5), 728-742.
  • Zheng, Z., Jin, Y., Zhang, L., Xu, X., & Yang, N. (2024). Inactivation of microorganisms in foods by electric field processing: A review. Journal of Agriculture and Food Research, 16, 101109.
  • Zura-Bravo, L., Solís, D., Masztalerz, K., Tabilo-Munizaga, G., Pérez-Won, M., & Lemus-Mondaca, R. (2023). High Hydrostatic Pressure Applied to Pre-and PostRigor Jack Mackerel (Trachurus murphyi) and the Assessment of Their Physicochemical Properties under Cold Storage.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Post-Harvest Fisheries Technologies (Incl. Transportation)
Journal Section Review
Authors

Serpil Aday 0000-0002-2896-1191

Submission Date September 1, 2025
Acceptance Date October 8, 2025
Publication Date December 22, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Aday, S. (2025). Taze Balığın Raf Ömrünü Uzatmak için Termal Olmayan İşleme Teknikleri. Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries, 8(2), 224-232. https://doi.org/10.46384/jmsf.1775344