Review
BibTex RIS Cite

Mathematical Modeling Application in Energy Conversion and Energy Storage

Year 2022, , 67 - 79, 31.08.2022
https://doi.org/10.33187/jmsm.1126076

Abstract

The use of mathematical modeling to predict and investigate the effect of process variables in the research and engineering field of energy conversion and energy storage has also received special attention from scientists and industrial designers in this field due to their importance in the global economy. This review article investigates the applications of mathematical modeling and simulation in energy conversion and energy storage processes, and finally, with a case study, the application of mathematical modeling in the desired processes to be tested and compared with the reported results in the papers. In the first part, the main emphasis is on energy conversion, especially on the structure of solar cells and fuel cells and mathematical modeling methods, and predicting the effect of operating variables on their performance. The basic principles of modeling solar cells and fuel cells to understand the relationships governing the current, voltage, performance, and power of PV modules are to be discussed. And with a case study, modeling of the process to estimate the performance of PV modules and SOFC in various conditions has been investigated. In the second part, the main focus is on the mathematical modeling of energy storage devices including batteries and supercapacitors. Supercapacitors and batteries are electrochemical energy storage devices that can be charged within a few seconds to a few minutes. This efficient energy storage is based on the electrocatalytic effect of the electrode with a high surface area. The mathematical equations governing the battery and supercapacitor are discussed in the article, and battery and supercapacitor performance are to be simulated as a case study. Due to the Multiphysics nature of energy conversion and storage systems, the simulation is performed in two stages. In the first step, the semiconductor equations are applied and the electrical response of the electrochemical device is modeled. In the second step, if needed, the thermal equations can be entered into the main calculations and the net amount of heat and the temperature profile in the desired device is evaluated. The main goals and ideas of compiling this review article are expressing the importance and role of electrochemical and electrocatalysts in energy production and storage processes and paying attention to the governing mechanism and mathematical equations and highlighting important and common models used in different parts of energy conversion and storage in a coherent article.

Supporting Institution

-

Project Number

-

Thanks

The authors would like to thank the university of Sakarya and the University of Tabriz for their collaboration in the present work.

References

  • [1] N. Delibaş, A. Moradi, S. Hosseini, M. Maleki, M. Bahramgour, A. Niaei, Investigation of the effect of polymeric and non-polymeric materials in the hole transfer layer on the performance of perovskite solar cell, KSU J. Eng. Sci., 25(1) (2022), 1–6.
  • [2] S. Hosseini, M. Bahramgour, N. Delibas¸, A. Niaei, Interface Modification by Using an Ultrathin P3HT Layer in a Custom Perovskite Solar Cell Through SCAPS-1D Simulation, SAU J. Sci., 25(5) (2021), 1168–1179.
  • [3] M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, S. Degrave, SCAPS Manual, February, 2016.
  • [4] J. Nelson, The physics of solar cells, Imperial College Press, 2003.
  • [5] A. Hinsch, S. Behrens, M. Berginc, H. B¨onnemann, H. Brandt, A. Drewitz, Material development for dye solar modules: results from an integrated approach, Prog Photovolt: Res. Appl., 16(6) (2008), 489–501.
  • [6] S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Gratzel, J. O. Schumacher, Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction, J. Phys. Chem. C, 115(20) (2011), 10218-10229.
  • [7] S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, F. Capasso, Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry, Appl. Surf. Sci., 421, (2017), 778-782.
  • [8] J. M. Ball, S. D. Stranks, M. T. H¨orantner, S. H¨uttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, H. J. Snaith, Optical properties and limiting photocurrent of thin-film perovskite solar cells, Energy Environ. Sci., 8(2) (2015), 602-609.
  • [9] P. Pattanasattayavong, G. O. Ndjawa, K. Zhao, K. W. Chou, N. Gross, B. C. Regan, A. Amassian, T. D. Anthopoulos, Electric field-induced hole transport in copper (I) thiocyanate (CuSCN) thin-films processed from solution at room temperature, ChemComm, 49(39), (2013), 4154-4156.
  • [10] T. H. Anderson, M. Faryad, T. G. Mackay, A. Lakhtakia, R. Singh, Combined optical–electrical finite-element simulations of thin-film solar cells with homogeneous and nonhomogeneous intrinsic layers, J. Photonics Energy, 6(2), (2016), 025502.
  • [11] S. Hosseini, N. Delibaş, M. Bahramgour, A. T. Mashayekh, A. Niaei, Performance Comparison of Different Hole Transport Layer Configurations in a Perovskite-based Solar Cell using SCAPS-1D Simulation, Eur J Sci Technol, (31), (2021), 121–126.
  • [12] A. Bouarissa, A. Gueddim, N. Bouarissa, H. M. Meherezi, Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through window, buffer and absorber layers optimization, Mater. Sci. Eng., B, 263 (2021), 114816.
  • [13] A. M. Islam, S. Islam, K. Sobayel, E. Emon, F. A. Jhuma, M. Shahiduzzaman, M. J. Rashid, Performance analysis of tungsten disulfide (WS2) as an alternative buffer layer for CdTe solar cell through numerical modeling, Opt Mater, 120 (2021), 111296.
  • [14] E.Y. Plotnikova, A.V. Arsentiev, M. E. Harchenko, Textured solar cell modeling in TCAD. In IOP Conf. Series, Mater Sci Eng, 1035(1), (2021), 012002.
  • [15] M. Rasheed, M. N. A. Darraji, S. Shihab, A. Rashid, T. Rashid, The numerical Calculations of Single-Diode Solar Cell Modeling Parameters, Int J of Phys: Conf. Series 1963(1) (2021), 012058.
  • [16] P. Saxena, N. E. Gorji, COMSOL simulation of heat distribution in perovskite solar cells: coupled optical–electrical–thermal 3-D analysis, IEEE J Photovoltaics, 9(6), (2019), 1693-1698.
  • [17] N. Delibaş, S. Bahrami Gharamaleki, M. Mansouri, A. Niaei, Reduction of operation temperature in SOFCs utilizing perovskites: Review, Int. Adv. Res. Eng., 06(1), (2022), 56-67.
  • [18] M. Ahangari, Investigation of Current, Temperature, and Concentration distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach, M.Sc. Thesis, The University of Tabriz, 2021.
  • [19] S. Hussain, L. Yangping, Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte, Energy Transitions, 4(2) (2020), 113–126.
  • [20] M.Z. Ahmad, S.H. Ahmad, R.S. Chen, A.F. Ismail, R. Hazan, N. A. Baharuddin, Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int J Hydrog Energy, 47(2) (2022), 1103–1120.
  • [21] T. B. Ferriday, P. H. Middleton, Alkaline fuel cell technology-A review, Int. J. Hydrog. Energy, 46(35) (2021), 18489-18510.
  • [22] A. M. Abdalla, S. Hossain, A. T. Azad, P. M. I Petra, F. Begum, S. G. Eriksson, A. K. Azad, Nanomaterials for solid oxide fuel cells: A review, Renew. Sust. Energ Rev., 82(1), (2018), 353-368.
  • [23] N. Kurahashi, K. Murase, M. Santander, High-Energy Extragalactic Neutrino Astrophysics, Annu. Rev. Nucl. Part Sci., 72, 2022.
  • [24] N. Shaari, S. K. Kamarudin, R. Bahru, S. H. Osman, N. A. Ishak, Progress and challenges: Review for direct liquid fuel cell, Int. J. of Energy Research, 45(5), (2021), 6644-6688.
  • [25] L. Shu, J. Sunarso, S. S. Hashim, J. Mao, W. Zhou, F. Liang, Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrog. Energy, 44(59) (2019), 31275–31304.
  • [26] M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrog. Energy, 46(54) (2021), 27643-27674.
  • [27] M. Kooshki, N. Delibas¸, S. Bahrami, A. Niaei, 2D Modeling of Lithium-Ion Battery Using COMSOL Multiphysics, 4th Int. Cong. on Eng Sci Multidiscip Appro, İIstanbul, 03-04 Nov. (2022), 603–608.
  • [28] M. A. Gabalawy, N. S. Hosny, S. A. Hussien, Lithium-Ion Battery Modeling Including Degradation Based on Single-Particle Approximations, Batteries 6(3) (2020), 37.
  • [29] Z. Feng, W. Peng, Z. Wang, H. Guo, X. Li, G. Yan, J. Wang, Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Mineral Metall. Mater., 28(10) (2021), 1549-1564.
  • [30] H. Zhang, M. Zhou, C. Lina, B. K. Zhu, Progress in polymeric separators for lithium ion batteries, RSC Adv, 5(109) (2015), 89848–89860.
  • [31] Y. Miao, P. Hynan, A. Jouanne, A. Yokochi, Current Li-ion battery technologies in electric vehicles and opportunities for advancements, Energies, 12(6) (2019), 1074.
  • [32] N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater Today, 18(5) (2015) 252–264.
  • [33] Y. Li, Z. Zhou, W. T. Wu, Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate, Appl. Therm. Eng., 147 (2019), 829–840.
  • [34] V. R. Subramanian, V. Boovaragavan, V. D. Diwakar, Toward real-time simulation of physics based lithium-ion battery models, Electrochem. Solid-State Lett., 10(11) (2007), A255.
  • [35] L. Cai, R. E. White, Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software, J. Power Sources, 196(14) (2011), 5985-5989.
  • [36] D. H. Jeon, S. M. Baek, Thermal modeling of cylindrical lithium ion battery during discharge cycle, Energy Convers. Manag. 52(8-9), (2011), 2973–2981.
  • [37] A. Lavacchi, U. Bardi, C. Borri, S. Caporali, A. Fossati, I. Perissi, Cyclic voltammetry simulation at microelectrode arrays with COMSOL Multiphysics, J. Appl. Electrochem., 39 (2009) 2159–2163.
  • [38] K. Krois, L. H¨ufner, J. Glasel, B. J. M. Etzold, Simulative approach for linking electrode and electrolyte properties to supercapacitor performance, Chemie Ingenieur Technik, 91(6) (2019), 889–899.
  • [39] P. Chinnasa, W. Ponhan, W. Choawunklang, Modeling and simulation of a LaCoO3 Nanofibers/CNT electrode for supercapacitor application, in J Phys: Conference Series, 1380 (2019), 012101.
  • [40] H. Farsi, F. Gobal, Theoretical analysis of the performance of a model supercapacitor consisting of metal oxide nano-particles, J. Solid State Electrochem., 11(8) (2007), 1085–1092.
  • [41] H. Farsi, F. Gobal, A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part I: model description and particle size effects, J. Solid State Electrochem., 13(3) (2009), 433–443.
  • [42] H. Farsi, F. Gobal, A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part II: the effects of intrinsic factors, J. Solid State Electrochem., 15(1) (2011), 115–123.
  • [43] C. Lin, J. A. Ritter, B. N. Popov, R. E. White,A Mathematical Model of an Electrochemical Capacitor with Double Layer and Faradaic Processes, J. Electrochem. Soc, 146(9) (1999), 3168.
  • [44] Pech, D., et al., Influence of the configuration in planar interdigitated electrochemical micro-capacitors, J. Power Sources, 230(2013), 230–235.
  • [45] D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet, D. Guay, Modeling and simulation of a lithium manganese oxide/activated carbon asymmetric supercapacitor, J. Electron Mater., 45(1) (2016), 515–526.
  • [46] S. Aderyani, P. Flouda, S. A. Shah, M. J. Green, J. L. Lutkenhaus, H. Ardebili, Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior, Electrochim. Acta, 390 (2021), 138822.
  • [47] C. Lian, D. Jiang, H. Liu, J. Wu, A generic model for electric double layers in porous electrodes, J. Phys. Chem. C, 120 (2016), 8704–8710.
  • [48] M. Kroupa, G. Offer, J. Kosek, Modeling of supercapacitors: factors influencing performance, J. Electmchem. Soc, 163(2016), A2475–A2487.
  • [49] H. Girard, H. Wang, A. d’Entremont, L. Pilon, Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors, J. Phys. Chem. C, 119 (2015), 11349–11361.
  • [50] H. Wang, L. Pilon, Accurate simulations of electric double layer capacitance of ultramicroelectrodes, J. Phys. Chem. C, 115 (2011) 16711–16719.
  • [51] H. Wang, L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances, Electrochim. Acta, 64 (2012) 130–139.
  • [52] H. Wang, A. Thiele, L. Pilon, Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: a generalized modified Poisson- Nernst-Planck model, J. Phys. Chem. C, 117, (2013), 18286–18297. M. Bohner, A. Peterson, (Eds.), Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
  • [53] A. Bard, L. Faulker, Electrochemical Methods, Fundamentals and Applications, Wiley and Sons, New Jersey, (2001), 137–153.
  • [54] T. Fuller, J. Harb, Electrochemical Engineering, Wiley Sons, New Jersey, (2018), 41–87.
  • [55] J. Newman, K. T. Alyea, Electrochemical Systems, Wiley Sons, New Jersey, (2004), 269–315.
Year 2022, , 67 - 79, 31.08.2022
https://doi.org/10.33187/jmsm.1126076

Abstract

Project Number

-

References

  • [1] N. Delibaş, A. Moradi, S. Hosseini, M. Maleki, M. Bahramgour, A. Niaei, Investigation of the effect of polymeric and non-polymeric materials in the hole transfer layer on the performance of perovskite solar cell, KSU J. Eng. Sci., 25(1) (2022), 1–6.
  • [2] S. Hosseini, M. Bahramgour, N. Delibas¸, A. Niaei, Interface Modification by Using an Ultrathin P3HT Layer in a Custom Perovskite Solar Cell Through SCAPS-1D Simulation, SAU J. Sci., 25(5) (2021), 1168–1179.
  • [3] M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, S. Degrave, SCAPS Manual, February, 2016.
  • [4] J. Nelson, The physics of solar cells, Imperial College Press, 2003.
  • [5] A. Hinsch, S. Behrens, M. Berginc, H. B¨onnemann, H. Brandt, A. Drewitz, Material development for dye solar modules: results from an integrated approach, Prog Photovolt: Res. Appl., 16(6) (2008), 489–501.
  • [6] S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Gratzel, J. O. Schumacher, Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction, J. Phys. Chem. C, 115(20) (2011), 10218-10229.
  • [7] S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, F. Capasso, Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry, Appl. Surf. Sci., 421, (2017), 778-782.
  • [8] J. M. Ball, S. D. Stranks, M. T. H¨orantner, S. H¨uttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, H. J. Snaith, Optical properties and limiting photocurrent of thin-film perovskite solar cells, Energy Environ. Sci., 8(2) (2015), 602-609.
  • [9] P. Pattanasattayavong, G. O. Ndjawa, K. Zhao, K. W. Chou, N. Gross, B. C. Regan, A. Amassian, T. D. Anthopoulos, Electric field-induced hole transport in copper (I) thiocyanate (CuSCN) thin-films processed from solution at room temperature, ChemComm, 49(39), (2013), 4154-4156.
  • [10] T. H. Anderson, M. Faryad, T. G. Mackay, A. Lakhtakia, R. Singh, Combined optical–electrical finite-element simulations of thin-film solar cells with homogeneous and nonhomogeneous intrinsic layers, J. Photonics Energy, 6(2), (2016), 025502.
  • [11] S. Hosseini, N. Delibaş, M. Bahramgour, A. T. Mashayekh, A. Niaei, Performance Comparison of Different Hole Transport Layer Configurations in a Perovskite-based Solar Cell using SCAPS-1D Simulation, Eur J Sci Technol, (31), (2021), 121–126.
  • [12] A. Bouarissa, A. Gueddim, N. Bouarissa, H. M. Meherezi, Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through window, buffer and absorber layers optimization, Mater. Sci. Eng., B, 263 (2021), 114816.
  • [13] A. M. Islam, S. Islam, K. Sobayel, E. Emon, F. A. Jhuma, M. Shahiduzzaman, M. J. Rashid, Performance analysis of tungsten disulfide (WS2) as an alternative buffer layer for CdTe solar cell through numerical modeling, Opt Mater, 120 (2021), 111296.
  • [14] E.Y. Plotnikova, A.V. Arsentiev, M. E. Harchenko, Textured solar cell modeling in TCAD. In IOP Conf. Series, Mater Sci Eng, 1035(1), (2021), 012002.
  • [15] M. Rasheed, M. N. A. Darraji, S. Shihab, A. Rashid, T. Rashid, The numerical Calculations of Single-Diode Solar Cell Modeling Parameters, Int J of Phys: Conf. Series 1963(1) (2021), 012058.
  • [16] P. Saxena, N. E. Gorji, COMSOL simulation of heat distribution in perovskite solar cells: coupled optical–electrical–thermal 3-D analysis, IEEE J Photovoltaics, 9(6), (2019), 1693-1698.
  • [17] N. Delibaş, S. Bahrami Gharamaleki, M. Mansouri, A. Niaei, Reduction of operation temperature in SOFCs utilizing perovskites: Review, Int. Adv. Res. Eng., 06(1), (2022), 56-67.
  • [18] M. Ahangari, Investigation of Current, Temperature, and Concentration distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach, M.Sc. Thesis, The University of Tabriz, 2021.
  • [19] S. Hussain, L. Yangping, Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte, Energy Transitions, 4(2) (2020), 113–126.
  • [20] M.Z. Ahmad, S.H. Ahmad, R.S. Chen, A.F. Ismail, R. Hazan, N. A. Baharuddin, Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int J Hydrog Energy, 47(2) (2022), 1103–1120.
  • [21] T. B. Ferriday, P. H. Middleton, Alkaline fuel cell technology-A review, Int. J. Hydrog. Energy, 46(35) (2021), 18489-18510.
  • [22] A. M. Abdalla, S. Hossain, A. T. Azad, P. M. I Petra, F. Begum, S. G. Eriksson, A. K. Azad, Nanomaterials for solid oxide fuel cells: A review, Renew. Sust. Energ Rev., 82(1), (2018), 353-368.
  • [23] N. Kurahashi, K. Murase, M. Santander, High-Energy Extragalactic Neutrino Astrophysics, Annu. Rev. Nucl. Part Sci., 72, 2022.
  • [24] N. Shaari, S. K. Kamarudin, R. Bahru, S. H. Osman, N. A. Ishak, Progress and challenges: Review for direct liquid fuel cell, Int. J. of Energy Research, 45(5), (2021), 6644-6688.
  • [25] L. Shu, J. Sunarso, S. S. Hashim, J. Mao, W. Zhou, F. Liang, Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrog. Energy, 44(59) (2019), 31275–31304.
  • [26] M. Singh, D. Zappa, E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrog. Energy, 46(54) (2021), 27643-27674.
  • [27] M. Kooshki, N. Delibas¸, S. Bahrami, A. Niaei, 2D Modeling of Lithium-Ion Battery Using COMSOL Multiphysics, 4th Int. Cong. on Eng Sci Multidiscip Appro, İIstanbul, 03-04 Nov. (2022), 603–608.
  • [28] M. A. Gabalawy, N. S. Hosny, S. A. Hussien, Lithium-Ion Battery Modeling Including Degradation Based on Single-Particle Approximations, Batteries 6(3) (2020), 37.
  • [29] Z. Feng, W. Peng, Z. Wang, H. Guo, X. Li, G. Yan, J. Wang, Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Mineral Metall. Mater., 28(10) (2021), 1549-1564.
  • [30] H. Zhang, M. Zhou, C. Lina, B. K. Zhu, Progress in polymeric separators for lithium ion batteries, RSC Adv, 5(109) (2015), 89848–89860.
  • [31] Y. Miao, P. Hynan, A. Jouanne, A. Yokochi, Current Li-ion battery technologies in electric vehicles and opportunities for advancements, Energies, 12(6) (2019), 1074.
  • [32] N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater Today, 18(5) (2015) 252–264.
  • [33] Y. Li, Z. Zhou, W. T. Wu, Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate, Appl. Therm. Eng., 147 (2019), 829–840.
  • [34] V. R. Subramanian, V. Boovaragavan, V. D. Diwakar, Toward real-time simulation of physics based lithium-ion battery models, Electrochem. Solid-State Lett., 10(11) (2007), A255.
  • [35] L. Cai, R. E. White, Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software, J. Power Sources, 196(14) (2011), 5985-5989.
  • [36] D. H. Jeon, S. M. Baek, Thermal modeling of cylindrical lithium ion battery during discharge cycle, Energy Convers. Manag. 52(8-9), (2011), 2973–2981.
  • [37] A. Lavacchi, U. Bardi, C. Borri, S. Caporali, A. Fossati, I. Perissi, Cyclic voltammetry simulation at microelectrode arrays with COMSOL Multiphysics, J. Appl. Electrochem., 39 (2009) 2159–2163.
  • [38] K. Krois, L. H¨ufner, J. Glasel, B. J. M. Etzold, Simulative approach for linking electrode and electrolyte properties to supercapacitor performance, Chemie Ingenieur Technik, 91(6) (2019), 889–899.
  • [39] P. Chinnasa, W. Ponhan, W. Choawunklang, Modeling and simulation of a LaCoO3 Nanofibers/CNT electrode for supercapacitor application, in J Phys: Conference Series, 1380 (2019), 012101.
  • [40] H. Farsi, F. Gobal, Theoretical analysis of the performance of a model supercapacitor consisting of metal oxide nano-particles, J. Solid State Electrochem., 11(8) (2007), 1085–1092.
  • [41] H. Farsi, F. Gobal, A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part I: model description and particle size effects, J. Solid State Electrochem., 13(3) (2009), 433–443.
  • [42] H. Farsi, F. Gobal, A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part II: the effects of intrinsic factors, J. Solid State Electrochem., 15(1) (2011), 115–123.
  • [43] C. Lin, J. A. Ritter, B. N. Popov, R. E. White,A Mathematical Model of an Electrochemical Capacitor with Double Layer and Faradaic Processes, J. Electrochem. Soc, 146(9) (1999), 3168.
  • [44] Pech, D., et al., Influence of the configuration in planar interdigitated electrochemical micro-capacitors, J. Power Sources, 230(2013), 230–235.
  • [45] D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet, D. Guay, Modeling and simulation of a lithium manganese oxide/activated carbon asymmetric supercapacitor, J. Electron Mater., 45(1) (2016), 515–526.
  • [46] S. Aderyani, P. Flouda, S. A. Shah, M. J. Green, J. L. Lutkenhaus, H. Ardebili, Simulation of cyclic voltammetry in structural supercapacitors with pseudocapacitance behavior, Electrochim. Acta, 390 (2021), 138822.
  • [47] C. Lian, D. Jiang, H. Liu, J. Wu, A generic model for electric double layers in porous electrodes, J. Phys. Chem. C, 120 (2016), 8704–8710.
  • [48] M. Kroupa, G. Offer, J. Kosek, Modeling of supercapacitors: factors influencing performance, J. Electmchem. Soc, 163(2016), A2475–A2487.
  • [49] H. Girard, H. Wang, A. d’Entremont, L. Pilon, Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors, J. Phys. Chem. C, 119 (2015), 11349–11361.
  • [50] H. Wang, L. Pilon, Accurate simulations of electric double layer capacitance of ultramicroelectrodes, J. Phys. Chem. C, 115 (2011) 16711–16719.
  • [51] H. Wang, L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances, Electrochim. Acta, 64 (2012) 130–139.
  • [52] H. Wang, A. Thiele, L. Pilon, Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: a generalized modified Poisson- Nernst-Planck model, J. Phys. Chem. C, 117, (2013), 18286–18297. M. Bohner, A. Peterson, (Eds.), Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
  • [53] A. Bard, L. Faulker, Electrochemical Methods, Fundamentals and Applications, Wiley and Sons, New Jersey, (2001), 137–153.
  • [54] T. Fuller, J. Harb, Electrochemical Engineering, Wiley Sons, New Jersey, (2018), 41–87.
  • [55] J. Newman, K. T. Alyea, Electrochemical Systems, Wiley Sons, New Jersey, (2004), 269–315.
There are 55 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nagihan Delibaş 0000-0001-5752-062X

Seyyedreza Hosseini 0000-0002-0946-7489

Aligholi Niaie 0000-0001-5580-4266

Project Number -
Publication Date August 31, 2022
Submission Date June 4, 2022
Acceptance Date August 10, 2022
Published in Issue Year 2022

Cite

APA Delibaş, N., Hosseini, S., & Niaie, A. (2022). Mathematical Modeling Application in Energy Conversion and Energy Storage. Journal of Mathematical Sciences and Modelling, 5(2), 67-79. https://doi.org/10.33187/jmsm.1126076
AMA Delibaş N, Hosseini S, Niaie A. Mathematical Modeling Application in Energy Conversion and Energy Storage. Journal of Mathematical Sciences and Modelling. August 2022;5(2):67-79. doi:10.33187/jmsm.1126076
Chicago Delibaş, Nagihan, Seyyedreza Hosseini, and Aligholi Niaie. “Mathematical Modeling Application in Energy Conversion and Energy Storage”. Journal of Mathematical Sciences and Modelling 5, no. 2 (August 2022): 67-79. https://doi.org/10.33187/jmsm.1126076.
EndNote Delibaş N, Hosseini S, Niaie A (August 1, 2022) Mathematical Modeling Application in Energy Conversion and Energy Storage. Journal of Mathematical Sciences and Modelling 5 2 67–79.
IEEE N. Delibaş, S. Hosseini, and A. Niaie, “Mathematical Modeling Application in Energy Conversion and Energy Storage”, Journal of Mathematical Sciences and Modelling, vol. 5, no. 2, pp. 67–79, 2022, doi: 10.33187/jmsm.1126076.
ISNAD Delibaş, Nagihan et al. “Mathematical Modeling Application in Energy Conversion and Energy Storage”. Journal of Mathematical Sciences and Modelling 5/2 (August 2022), 67-79. https://doi.org/10.33187/jmsm.1126076.
JAMA Delibaş N, Hosseini S, Niaie A. Mathematical Modeling Application in Energy Conversion and Energy Storage. Journal of Mathematical Sciences and Modelling. 2022;5:67–79.
MLA Delibaş, Nagihan et al. “Mathematical Modeling Application in Energy Conversion and Energy Storage”. Journal of Mathematical Sciences and Modelling, vol. 5, no. 2, 2022, pp. 67-79, doi:10.33187/jmsm.1126076.
Vancouver Delibaş N, Hosseini S, Niaie A. Mathematical Modeling Application in Energy Conversion and Energy Storage. Journal of Mathematical Sciences and Modelling. 2022;5(2):67-79.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.