Research Article
BibTex RIS Cite

Exact Solution for Nonlinear Acoustics Model with Conformable Derivative

Year 2025, , 22 - 27, 28.03.2025
https://doi.org/10.33187/jmsm.1568836

Abstract

In this study, we investigate the analytical solutions of the Zabolotskaya–Khokhlov (ZK) equation, which describes the propagation of nonlinear acoustic waves with diffraction effects in a medium. Its physical significance lies in modeling the behavior of high-amplitude sound waves, where nonlinear effects (such as wave steepening) and diffraction (spreading of the wave in directions perpendicular to the main propagation axis) both play an important role. In the ZK equation, time derivatives are described in terms of conformable derivatives, which have gained popularity recently and have drawn attention from numerous studies. It offers nearly all the fundamental characteristics of the classical derivative in the Newtonian style, and it looks into the precise solution of the mathematical model this derivative expresses. Also sub-equation method is used as a tool for obtaining the analytical results. 3D graphical illustrations are given to express the physical behavior of obtained results.

References

  • [1] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
  • [2] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, 2000.
  • [3] D. Baleanu, K. Diethelm, E. Scalas, et al., Fractional Calculus: Models and Numerical Methods, World Scientific, 2012.
  • [4] V. Daftardar-Gejji (Ed.), Fractional Calculus, Alpha Science International Limited, 2013.
  • [5] R. Khalil, M. Al Horani, A. Yousef, et al., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70.
  • [6] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
  • [7] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13(1) (2015), 000010151520150081.
  • [8] M. A. S. Murad, Optical solutions for perturbed conformable Fokas–Lenells equation via Kudryashov auxiliary equation method, ,Mod. Phys. Lett. B, 39(7) (2025), 2450418.
  • [9] A. Has, B. Yılmaz, D. Baleanu, On the geometric and physical properties of conformable derivative, Math. Sci. Appl. E-Notes, 12(2) (2024), 60–70.
  • [10] A. Farooq, M. I. Khan, W. X. Ma, Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method, ,Opt. Quantum Electron., 56(4) (2024), 542.
  • [11] A. K. Chakrabarty, M. M. Roshid, M. M. Rahaman, et al., Dynamical analysis of optical soliton solutions for CGL equation with Kerr law nonlinearity in classical, truncated M-fractional derivative, beta fractional derivative, and conformable fractional derivative types, Results Phys., 60 (2024), 107636.
  • [12] L. Sadek A. Akgül, New properties for conformable fractional derivative and applications, Progr. Fract. Differ. App., 10(3) (2024), 335–344.
  • [13] A. Islam, M. Sagib, M. M. Rashid, et al., Abundant optical soliton solutions to the fractional perturbed Chen-Lee-Liu equation with conformable derivative, Phys. Scr., 99(5) (2024), 055247.
  • [14] H. Durur, A. Kurt, O. Tasbozan, New traelling wave solutions for KdV6 equation using sub equation method, Appl. Math. Nonlinear Sci., 5(1) (2020), 455–460.
  • [15] M. Kumar, R. Kumar, A. Kumar, On similarity solutions of Zabolotskaya-Khokhlov equation, Comput. Math. Appl., 68(4) (2014), 454–463.
Year 2025, , 22 - 27, 28.03.2025
https://doi.org/10.33187/jmsm.1568836

Abstract

References

  • [1] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
  • [2] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, 2000.
  • [3] D. Baleanu, K. Diethelm, E. Scalas, et al., Fractional Calculus: Models and Numerical Methods, World Scientific, 2012.
  • [4] V. Daftardar-Gejji (Ed.), Fractional Calculus, Alpha Science International Limited, 2013.
  • [5] R. Khalil, M. Al Horani, A. Yousef, et al., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70.
  • [6] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
  • [7] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13(1) (2015), 000010151520150081.
  • [8] M. A. S. Murad, Optical solutions for perturbed conformable Fokas–Lenells equation via Kudryashov auxiliary equation method, ,Mod. Phys. Lett. B, 39(7) (2025), 2450418.
  • [9] A. Has, B. Yılmaz, D. Baleanu, On the geometric and physical properties of conformable derivative, Math. Sci. Appl. E-Notes, 12(2) (2024), 60–70.
  • [10] A. Farooq, M. I. Khan, W. X. Ma, Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method, ,Opt. Quantum Electron., 56(4) (2024), 542.
  • [11] A. K. Chakrabarty, M. M. Roshid, M. M. Rahaman, et al., Dynamical analysis of optical soliton solutions for CGL equation with Kerr law nonlinearity in classical, truncated M-fractional derivative, beta fractional derivative, and conformable fractional derivative types, Results Phys., 60 (2024), 107636.
  • [12] L. Sadek A. Akgül, New properties for conformable fractional derivative and applications, Progr. Fract. Differ. App., 10(3) (2024), 335–344.
  • [13] A. Islam, M. Sagib, M. M. Rashid, et al., Abundant optical soliton solutions to the fractional perturbed Chen-Lee-Liu equation with conformable derivative, Phys. Scr., 99(5) (2024), 055247.
  • [14] H. Durur, A. Kurt, O. Tasbozan, New traelling wave solutions for KdV6 equation using sub equation method, Appl. Math. Nonlinear Sci., 5(1) (2020), 455–460.
  • [15] M. Kumar, R. Kumar, A. Kumar, On similarity solutions of Zabolotskaya-Khokhlov equation, Comput. Math. Appl., 68(4) (2014), 454–463.
There are 15 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Applied Mathematics (Other)
Journal Section Articles
Authors

Ali Kurt 0000-0002-0617-6037

Orkun Taşbozan 0000-0001-5003-6341

Early Pub Date March 22, 2025
Publication Date March 28, 2025
Submission Date October 16, 2024
Acceptance Date March 14, 2025
Published in Issue Year 2025

Cite

APA Kurt, A., & Taşbozan, O. (2025). Exact Solution for Nonlinear Acoustics Model with Conformable Derivative. Journal of Mathematical Sciences and Modelling, 8(1), 22-27. https://doi.org/10.33187/jmsm.1568836
AMA Kurt A, Taşbozan O. Exact Solution for Nonlinear Acoustics Model with Conformable Derivative. Journal of Mathematical Sciences and Modelling. March 2025;8(1):22-27. doi:10.33187/jmsm.1568836
Chicago Kurt, Ali, and Orkun Taşbozan. “Exact Solution for Nonlinear Acoustics Model With Conformable Derivative”. Journal of Mathematical Sciences and Modelling 8, no. 1 (March 2025): 22-27. https://doi.org/10.33187/jmsm.1568836.
EndNote Kurt A, Taşbozan O (March 1, 2025) Exact Solution for Nonlinear Acoustics Model with Conformable Derivative. Journal of Mathematical Sciences and Modelling 8 1 22–27.
IEEE A. Kurt and O. Taşbozan, “Exact Solution for Nonlinear Acoustics Model with Conformable Derivative”, Journal of Mathematical Sciences and Modelling, vol. 8, no. 1, pp. 22–27, 2025, doi: 10.33187/jmsm.1568836.
ISNAD Kurt, Ali - Taşbozan, Orkun. “Exact Solution for Nonlinear Acoustics Model With Conformable Derivative”. Journal of Mathematical Sciences and Modelling 8/1 (March 2025), 22-27. https://doi.org/10.33187/jmsm.1568836.
JAMA Kurt A, Taşbozan O. Exact Solution for Nonlinear Acoustics Model with Conformable Derivative. Journal of Mathematical Sciences and Modelling. 2025;8:22–27.
MLA Kurt, Ali and Orkun Taşbozan. “Exact Solution for Nonlinear Acoustics Model With Conformable Derivative”. Journal of Mathematical Sciences and Modelling, vol. 8, no. 1, 2025, pp. 22-27, doi:10.33187/jmsm.1568836.
Vancouver Kurt A, Taşbozan O. Exact Solution for Nonlinear Acoustics Model with Conformable Derivative. Journal of Mathematical Sciences and Modelling. 2025;8(1):22-7.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.