Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 3, 121 - 128, 11.09.2025
https://doi.org/10.33187/jmsm.1650309

Abstract

References

  • [1] A. Madzvamuse, H.S. Ndakwo, R. Barreira, Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations, J. Math. Biol., 70 (2015), 709–743. https://doi.org/10.1007/s00285-014-0779-6
  • [2] R. K. Upadhyay, W. Wang, N.K. Thakur, Spatiotemporal dynamics in a spatial plankton system, Math. Model. Nat. Phenom., 5(5) (2010), 102-122. http://dx.doi.org/10.1051/mmnp/20105507
  • [3] N. An, X. Yu, C. Huang et al., Local discontinuous Galerkin methods coupled with implicit integration factor methods for solving reaction cross-diffusion systems, Disc. Dyn. Nat. Soc., 2016(1) (2016), Article ID 5345032, 18 pages. https://doi.org/10.1155/2016/5345032
  • [4] M. Dehghan, M. Abbaszadeh, Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction–diffusion system with and without cross-diffusion, Comput. Meth. Appl. Mech. Eng., 300 (2016), 770-797. https://doi.org/10.1016/j.cma.2015.11.033
  • [5] G. Q. Sun, Z. Jin, L. Li, et al., Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dyn., 69(4) (2012), 1631–1638. https://doi.org/10.1007/s11071-012-0374-6
  • [6] V. K. Vanag, I. R. Epstein, Cross-diffusion and pattern formation in reaction-diffusion systems, Phys. Chem. Chem. Phys., 11(6) (2009), 897-912. https://doi.org/10.1039/B813825G
  • [7] Z. Lin, R. Ruiz-Baier, C. Tian, Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion, J. Comput. Phys., 256 (2014), 806 – 823. https://doi.org/10.1016/j.jcp.2013.09.009
  • [8] B. Riviere, Discontinuous Galerkin Methods For Solving Elliptic and Parabolic Equations, Theory and Implementation, SIAM, Philadelphia, 2008.
  • [9] D. Arnold, F. Brezzi, B. Cockburn, et al., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39(5) (2002), 1749-1779. https://doi.org/10.1137/S0036142901384162
  • [10] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90(1) (2001), 117-148. https://doi.org/10.1007/s002110100282
  • [11] S. Volkwein, Proper orthogonal decomposition: Theory and reduced order modelling, Lecture Notes, University of Konstanz, 4(4) (2013), 1-29.
  • [12] M. Barrault, Y. Maday, N. C. Nguyen, et al., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, 339(9) (2004), 667-672. https://doi.org/10.1016/j.crma.2004.08.006
  • [13] S. Chaturantabut, D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32(5) (2010), 2737-2764. https://doi.org/10.1137/090766498
  • [14] A. Alla, J. N. Kutz, Nonlinear model order reduction via dynamic mode decomposition, SIAM J. Sci. Comput., 39(5) (2017), B778-B796. https://doi.org/10.1137/16M1059308
  • [15] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid. Mech., 656 (2010), 5-28. https://doi.org/10.1017/S0022112010001217
  • [16] C. W. Rowley, I. Mezic, S. Bagheri, et al., Spectral analysis of nonlinear flows, J. Fluid Mech., 641(2009), 115-127. https://doi.org/10.1017/S0022112009992059
  • [17] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. U.S.A., 17(5) (1931), 315-318. https://doi.org/10.1073/pnas.17.5.315
  • [18] J. L. Proctor, S. L. Brunton, J. N. Kutz, Dynamic mode decomposition with control, J. Appl. Dyn. Syst., 15(1) (2016), 142-161. https://doi.org/10.1137/15M1013857
  • [19] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, et al., On dynamic mode decomposition: Theory and applications, J. Comput. Dynam., 1(2) (2014), 391-421. https://doi.org/10.3934/jcd.2014.1.391
  • [20] S. Chaturantabut, C. Beattie, S. Gugercin, Structure-preserving model reduction for nonlinear Port-Hamiltonian systems, SIAM J. Sci. Comput., 38(5) (2016), B837-B865. https://doi.org/10.1137/15M1055085

The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model

Year 2025, Volume: 8 Issue: 3, 121 - 128, 11.09.2025
https://doi.org/10.33187/jmsm.1650309

Abstract

This work investigates reduced-order modelling (ROM) strategies for the Brusselator system, a linear cross-diffusion framework with applications in chemical and biological systems. Spatial discretization is performed via the symmetric interior penalty discontinuous Galerkin (SIPG) method, and time-stepping is handled via the backward Euler scheme to derive the full-order model (FOM). To construct reduced-order bases, singular value decomposition (SVD) is applied to a snapshot matrix of FOM solutions, followed by proper orthogonal decomposition (POD) to generate low-dimensional approximations. However, the nonlinear terms in the ROM retain the original high-dimensional structure of the FOM. To mitigate this computational burden, the discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) are integrated to approximate nonlinearities efficiently. Numerical experiments conducted on a 2D Brusselator system validate the accuracy and efficiency of the proposed POD-DEIM and POD-DMD frameworks, with both methods achieving close agreement with the FOM.

References

  • [1] A. Madzvamuse, H.S. Ndakwo, R. Barreira, Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations, J. Math. Biol., 70 (2015), 709–743. https://doi.org/10.1007/s00285-014-0779-6
  • [2] R. K. Upadhyay, W. Wang, N.K. Thakur, Spatiotemporal dynamics in a spatial plankton system, Math. Model. Nat. Phenom., 5(5) (2010), 102-122. http://dx.doi.org/10.1051/mmnp/20105507
  • [3] N. An, X. Yu, C. Huang et al., Local discontinuous Galerkin methods coupled with implicit integration factor methods for solving reaction cross-diffusion systems, Disc. Dyn. Nat. Soc., 2016(1) (2016), Article ID 5345032, 18 pages. https://doi.org/10.1155/2016/5345032
  • [4] M. Dehghan, M. Abbaszadeh, Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction–diffusion system with and without cross-diffusion, Comput. Meth. Appl. Mech. Eng., 300 (2016), 770-797. https://doi.org/10.1016/j.cma.2015.11.033
  • [5] G. Q. Sun, Z. Jin, L. Li, et al., Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dyn., 69(4) (2012), 1631–1638. https://doi.org/10.1007/s11071-012-0374-6
  • [6] V. K. Vanag, I. R. Epstein, Cross-diffusion and pattern formation in reaction-diffusion systems, Phys. Chem. Chem. Phys., 11(6) (2009), 897-912. https://doi.org/10.1039/B813825G
  • [7] Z. Lin, R. Ruiz-Baier, C. Tian, Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion, J. Comput. Phys., 256 (2014), 806 – 823. https://doi.org/10.1016/j.jcp.2013.09.009
  • [8] B. Riviere, Discontinuous Galerkin Methods For Solving Elliptic and Parabolic Equations, Theory and Implementation, SIAM, Philadelphia, 2008.
  • [9] D. Arnold, F. Brezzi, B. Cockburn, et al., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39(5) (2002), 1749-1779. https://doi.org/10.1137/S0036142901384162
  • [10] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90(1) (2001), 117-148. https://doi.org/10.1007/s002110100282
  • [11] S. Volkwein, Proper orthogonal decomposition: Theory and reduced order modelling, Lecture Notes, University of Konstanz, 4(4) (2013), 1-29.
  • [12] M. Barrault, Y. Maday, N. C. Nguyen, et al., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, 339(9) (2004), 667-672. https://doi.org/10.1016/j.crma.2004.08.006
  • [13] S. Chaturantabut, D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32(5) (2010), 2737-2764. https://doi.org/10.1137/090766498
  • [14] A. Alla, J. N. Kutz, Nonlinear model order reduction via dynamic mode decomposition, SIAM J. Sci. Comput., 39(5) (2017), B778-B796. https://doi.org/10.1137/16M1059308
  • [15] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid. Mech., 656 (2010), 5-28. https://doi.org/10.1017/S0022112010001217
  • [16] C. W. Rowley, I. Mezic, S. Bagheri, et al., Spectral analysis of nonlinear flows, J. Fluid Mech., 641(2009), 115-127. https://doi.org/10.1017/S0022112009992059
  • [17] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. U.S.A., 17(5) (1931), 315-318. https://doi.org/10.1073/pnas.17.5.315
  • [18] J. L. Proctor, S. L. Brunton, J. N. Kutz, Dynamic mode decomposition with control, J. Appl. Dyn. Syst., 15(1) (2016), 142-161. https://doi.org/10.1137/15M1013857
  • [19] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, et al., On dynamic mode decomposition: Theory and applications, J. Comput. Dynam., 1(2) (2014), 391-421. https://doi.org/10.3934/jcd.2014.1.391
  • [20] S. Chaturantabut, C. Beattie, S. Gugercin, Structure-preserving model reduction for nonlinear Port-Hamiltonian systems, SIAM J. Sci. Comput., 38(5) (2016), B837-B865. https://doi.org/10.1137/15M1055085
There are 20 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Gülden Mülayim 0000-0001-8952-7658

Submission Date March 3, 2025
Acceptance Date July 30, 2025
Early Pub Date August 18, 2025
Publication Date September 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Mülayim, G. (2025). The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model. Journal of Mathematical Sciences and Modelling, 8(3), 121-128. https://doi.org/10.33187/jmsm.1650309
AMA Mülayim G. The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model. Journal of Mathematical Sciences and Modelling. September 2025;8(3):121-128. doi:10.33187/jmsm.1650309
Chicago Mülayim, Gülden. “The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model”. Journal of Mathematical Sciences and Modelling 8, no. 3 (September 2025): 121-28. https://doi.org/10.33187/jmsm.1650309.
EndNote Mülayim G (September 1, 2025) The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model. Journal of Mathematical Sciences and Modelling 8 3 121–128.
IEEE G. Mülayim, “The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model”, Journal of Mathematical Sciences and Modelling, vol. 8, no. 3, pp. 121–128, 2025, doi: 10.33187/jmsm.1650309.
ISNAD Mülayim, Gülden. “The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model”. Journal of Mathematical Sciences and Modelling 8/3 (September2025), 121-128. https://doi.org/10.33187/jmsm.1650309.
JAMA Mülayim G. The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model. Journal of Mathematical Sciences and Modelling. 2025;8:121–128.
MLA Mülayim, Gülden. “The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model”. Journal of Mathematical Sciences and Modelling, vol. 8, no. 3, 2025, pp. 121-8, doi:10.33187/jmsm.1650309.
Vancouver Mülayim G. The Application of Model Order Reduction Methods to a Linear Cross-Diffusion Model. Journal of Mathematical Sciences and Modelling. 2025;8(3):121-8.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.