Research Article
BibTex RIS Cite

Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach

Year 2025, Volume: 8 Issue: 3, 153 - 166, 11.09.2025
https://doi.org/10.33187/jmsm.1726677

Abstract

Solar energy forecasting plays a crucial role in renewable energy integration and grid stability management. This study presents a comprehensive comparative analysis of machine learning and deep learning models for solar energy production forecasting using meteorological data. The research evaluates eight distinct forecasting approaches, including Long Short-Term Memory (LSTM) networks, XGBoost, linear regression variants (Linear, Ridge, Lasso), and classical time series models (ARIMA, SARIMA, Prophet), on both daily and hourly solar energy datasets. The meteorological dataset incorporates temperature, relative humidity, precipitation, cloud cover, sunshine duration, shortwave radiation, wind speed, and wind direction variables collected from the Kartepe region over seven years (2014-2020). Advanced preprocessing techniques, including feature extraction, lagged variables, moving averages, and robust scaling, were implemented to enhance model performance. The experimental evaluation employed k-fold cross-validation with statistical significance testing and confidence interval analysis to ensure robust model comparison. Results demonstrate that LSTM networks achieve strong performance on hourly data with $R^2 = 0.9622$ and RMSE = 9.92 kWh, effectively capturing complex temporal dependencies. For daily forecasting, Ridge regression exhibits good performance with $R^2 = 0.9997$ and RMSE = 8.53 kWh, demonstrating effective generalization capabilities. XGBoost shows competitive performance on hourly data ($R^2 = 0.9541$, RMSE = 10.94 kWh) while maintaining computational efficiency. Classical time series models, including ARIMA and SARIMA, demonstrate limitations in capturing complex meteorological relationships, particularly in high-frequency datasets. The study reveals that meteorological variables significantly enhance forecasting accuracy compared to approaches relying solely on historical production values. The research provides practical insights for renewable energy system operators and contributes to solar energy forecasting methodologies through detailed performance comparisons across multiple temporal resolutions.

References

  • [1] C. Voyant, G. Notton, S. Kalogirou, et al., Machine learning methods for solar radiation forecasting: A review, Renew. Energy, 105 (2017), 569-582. https://doi.org/10.1016/j.renene.2016.12.095
  • [2] A. Nadeem, M. F. Hanif, M. S. Naveed, et al., AI-Driven precision in solar forecasting: Breakthroughs in machine learning and deep learning, AIMS Geosci., 10(4) (2024), 684-734. https://doi.org/10.3934/geosci.2024035
  • [3] S. Cantillo-Luna, R. Moreno-Chuquen, D. Celeita, et al., Deep and Machine Learning Models to Forecast Photovoltaic Power Generation, Energies, 16(10) (2023), Article ID 4097. https://doi.org/10.3390/en16104097
  • [4] Y. Li, Y. Su, L. Shu, An ARMAX model for forecasting the power output of a grid connected photovoltaic system, Renew. Energy, 66 (2014), 78-89. http://dx.doi.org/10.1016/j.renene.2013.11.067
  • [5] G. E. Box, G. M. Jenkins, G. C. Reinsel, et al., Time Series Analysis: Forecasting and Control, John Wiley & Sons, 2015.
  • [6] M. Bouzerdoum, A. Mellit, A. M. Pavan, A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant, Sol. Energy, 98(Part C) (2013), 226-235. http://dx.doi.org/10.1016/j.solener.2013.10.002
  • [7] U. K. Das, K. S. Tey, M. Seyedmahmoudian, et al., Forecasting of photovoltaic power generation and model optimization: A review, Renew. Sustain. Energy Rev., 81(1) (2018), 912-928. https://doi.org/10.1016/j.rser.2017.08.017
  • [8] T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 785-794. https://doi.org/10.1145/2939672.2939785
  • [9] U. Singh, S. Singh, S. Gupta, et al., Forecasting rooftop photovoltaic solar power using machine learning techniques, Energy Rep., 13 (2025), 3616-3630. http://dx.doi.org/10.1016/j.egyr.2025.03.005
  • [10] C. Aksoy Tırmıkçı, C. Yavuz, C. Özkurt, et al., Machine learning-assisted evaluation of PVSOL software using a real-time rooftop PV system: A case study in Kocaeli, Turkey, with a focus on diffuse solar radiation, Int. J. Low- Carbon Technol., 20 (2025), 223-233. https://doi.org/10.1093/ijlct/ctae292
  • [11] P. Kumari, D. Toshniwal, Deep learning models for solar irradiance forecasting: A comprehensive review, J. Clean. Prod., 318 (2021), Article ID 128566. http://dx.doi.org/10.1016/j.jclepro.2021.128566
  • [12] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9(8) (1997), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • [13] A. Mellit, A. M. Pavan, V. Lughi, Deep learning neural networks for short-term photovoltaic power forecasting, Renew. Energy, 172 (2021), 276-288. https://doi.org/10.1016/j.renene.2021.02.166
  • [14] M. Jasinski, Z. Leonowicz, J. Jasinski, et al., PV Advancements & Challenges: Forecasting Techniques, Real Applications, and Grid Integration for a Sustainable Energy Future, 2023 IEEE International Conference on Environment and Electrical Engineering, (2023), 1-5. http://dx.doi.org/10.1109/EEEIC/ICPSEurope57605.2023.10194796
  • [15] M. Konstantinou, S. Peratikou, A. G. Charalambides, Solar Photovoltaic Forecasting of Power Output Using LSTM Networks, Atmosphere, 12(1) (2021), Article ID 124. https://doi.org/10.3390/atmos12010124
  • [16] X. Qing, Y. Niu, Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM, Energy, 148 (2018), 461-468. https://doi.org/10.1016/j.energy.2018.01.177
  • [17] A. Agga, A. Abbou, M. Labbadi, et al., Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models, Renew. Energy, 177 (2021), 101-112. https://doi.org/10.1016/j.renene.2021.05.095
  • [18] S. J. Taylor, B. Letham, Forecasting at scale, Amer. Statist. 72(1) (2018), 37-45. https://doi.org/10.1080/00031305.2017.1380080
  • [19] F. Petropoulos, D. Apiletti, V. Assimakopoulos, et al., Forecasting: Theory and practice, Int. J. Forecast., 38(3) (2022), 705-871. http://dx.doi.org/10.1016/j.ijforecast.2021.11.001
  • [20] A. R. Kaushik, S. Padmavathi, K. S. Gurucharan, et al., Performance Analysis of Regression Models in Solar PV Forecasting. 2023 3rd International Conference on Artificial Intelligence and Signal Processing (AISP), (2023), 1-5. http://dx.doi.org/10.1109/AISP57993.2023.10134943
  • [21] A. Alzahrani, P. Shamsi, C. Dagli, et al., Solar irradiance forecasting using deep neural networks, Procedia Comput. Sci., 114 (2017), 304-313. http://dx.doi.org/10.1016/j.procs.2017.09.045
  • [22] A. Gensler, J. Henze, B. Sick, et al., Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM Neural Networks, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), (2016), 002858-002865. https://doi.org/10.1109/SMC.2016.7844673
  • [23] K. Wang, X. Qi, H. Liu, A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network, Appl. Energy, 251 (2019), Article ID 113315. http://dx.doi.org/10.1016/j.apenergy.2019.113315
  • [24] M. Abdel-Nasser, K. Mahmoud, Accurate photovoltaic power forecasting models using deep LSTM-RNN, Neural Comput. Appl., 31(7) (2019), 2727-2740. https://link.springer.com/article/10.1007/s00521-017-3225-z
  • [25] H. Zang, L. Cheng, T. Ding, et al., Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network, IET Gener. Transm. Distrib., 12(20) (2018), 4557-4567. https://doi.org/10.1049/IET-GTD.2018.5847
  • [26] M. Lopez Santos, X. Garcia-Santiago, F. Echevarria Camarero, et al., Application of temporal fusion transformer for day-ahead PV power forecasting, Energies, 15(14) (2022), 5232. http://dx.doi.org/10.3390/en15145232
  • [27] M. F. Hanif, M. S. Naveed, M. Metwaly, et al., Advancing solar energy forecasting with modified ANN and light GBM learning algorithms, AIMS Energy, 12(2) (2024), 350-386. http://dx.doi.org/10.3934/energy.2024017
  • [28] J. Antonanzas, N. Osorio, R. Escobar, et al., Review of photovoltaic power forecasting, Sol. Energy, 136 (2016), 78-111. http://dx.doi.org/10.1016/j.solener.2016.06.069
  • [29] M. Q. Raza, M. Nadarajah, C. Ekanayake, On recent advances in PV output power forecast, Sol. Energy, 136 (2016), 125-144. http://dx.doi.org/10.1016/j.solener.2016.06.073
  • [30] R. J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, 3rd ed. OTexts, 2021. Available at: https://otexts.com/fpp3/
  • [31] P. Gupta, R. Singh, PV power forecasting based on data-driven models: A review, Int. J. Sustain. Eng., 14(6) (2021), 1733-1755. http://dx.doi.org/10.1080/19397038.2021.1986590
There are 31 citations in total.

Details

Primary Language English
Subjects Modelling and Simulation
Journal Section Research Article
Authors

Burcu Çarklı Yavuz 0000-0003-4089-024X

Ceyda Aksoy Tırmıkçı 0000-0003-0354-4022

Submission Date June 24, 2025
Acceptance Date August 29, 2025
Early Pub Date September 4, 2025
Publication Date September 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Çarklı Yavuz, B., & Aksoy Tırmıkçı, C. (2025). Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach. Journal of Mathematical Sciences and Modelling, 8(3), 153-166. https://doi.org/10.33187/jmsm.1726677
AMA Çarklı Yavuz B, Aksoy Tırmıkçı C. Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach. Journal of Mathematical Sciences and Modelling. September 2025;8(3):153-166. doi:10.33187/jmsm.1726677
Chicago Çarklı Yavuz, Burcu, and Ceyda Aksoy Tırmıkçı. “Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach”. Journal of Mathematical Sciences and Modelling 8, no. 3 (September 2025): 153-66. https://doi.org/10.33187/jmsm.1726677.
EndNote Çarklı Yavuz B, Aksoy Tırmıkçı C (September 1, 2025) Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach. Journal of Mathematical Sciences and Modelling 8 3 153–166.
IEEE B. Çarklı Yavuz and C. Aksoy Tırmıkçı, “Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach”, Journal of Mathematical Sciences and Modelling, vol. 8, no. 3, pp. 153–166, 2025, doi: 10.33187/jmsm.1726677.
ISNAD Çarklı Yavuz, Burcu - Aksoy Tırmıkçı, Ceyda. “Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach”. Journal of Mathematical Sciences and Modelling 8/3 (September2025), 153-166. https://doi.org/10.33187/jmsm.1726677.
JAMA Çarklı Yavuz B, Aksoy Tırmıkçı C. Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach. Journal of Mathematical Sciences and Modelling. 2025;8:153–166.
MLA Çarklı Yavuz, Burcu and Ceyda Aksoy Tırmıkçı. “Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach”. Journal of Mathematical Sciences and Modelling, vol. 8, no. 3, 2025, pp. 153-66, doi:10.33187/jmsm.1726677.
Vancouver Çarklı Yavuz B, Aksoy Tırmıkçı C. Comparative Analysis of Machine Learning and Deep Learning Models for Solar Energy Forecasting: A Meteorological Data-Driven Approach. Journal of Mathematical Sciences and Modelling. 2025;8(3):153-66.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.