Research Article
BibTex RIS Cite
Year 2019, , 1 - 13, 20.04.2019
https://doi.org/10.33187/jmsm.416628

Abstract

References

  • [1] D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. R. Stat. Soc. Ser. BStat. Methodol., 20 (1958), 102–107.
  • [2] M. E., Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its Application, Math. Comput. Simulation, 78 (2008), 493–506.
  • [3] R. Shanker, F. Hagos, On modeling of life times data using exponential and Lindley distribution, Biometrics Biostat. Internat. J., 2(4) (2015), 1–5.
  • [4] R. Shanker, Sujatha distribution and its applications, Statist. Transition New Ser., 17(3) (2016), 1–20.
  • [5] R. Shanker, The discrete Poisson-Sujatha distribution, Internat. J. Probab. Stat., 5(1) (2016), 1–9.
  • [6] R. Shanker, F.Hagos, Zero-Truncated Poisson-Sujatha distribution with Applications, J.Ethiopian Statist. Assoc., 24 (2015), 55–63.
  • [7] R. Shanker, F. Hagos, Size- biased Poisson-Sujatha distribution with Applications, Amer. J. Math. Statist., 6(4) 2016, 145-154.
  • [8] R. Shanker, Aquasi Sujatha distribution, Internat. J. Probab. Stat., 5(4) (2016), 89–100.
  • [9] T. Mussie, R.Shanker, A two-Parameter Sujatha distribution, Biometrics Biostat. Internat. J., 7 (3) (2018), 188–197.
  • [10] T. Mussie, R. Shanker, A New two-Parameter Sujatha distribution with properties and applications ,Türkiye Klinikleri J. Biostat., 10 (2) (2018), 96–113.
  • [11] R. Shanker, Akash distribution and its Applications, Internat. J. Probab. Stat., 4(3) (2015), 65–75.
  • [12] M. Shaked, J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, New York, 1994.
  • [13] C. E. Bonferroni, Elementidi Statistcagenerale, Seeber, Firenze, 1930.
  • [14] A. J. Gross, V. A Clark, Survival Distributions: Reliability Applications in the Biometrical Sciences, John Wiley, New York, 1975.
  • [15] J. F., Lawless, Statistical Models and Methods for Life time data,John Wiley and Sons, New York, 2003.

Another Two-Parameter Sujatha Distribution with Properties and Applications

Year 2019, , 1 - 13, 20.04.2019
https://doi.org/10.33187/jmsm.416628

Abstract

In this paper another two-parameter Sujatha distribution (ATPSD), which includes exponential distribution and Sujatha distribution as particular cases, has been proposed. Statistical properties including shapes for varying values of parameters, moments, coefficient of variation, skewness, kurtosis, index of dispersion, hazard rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves, and stress-strength reliability of ATPSD have been discussed. The method of moment estimation and the method of maximum likelihood estimation have been discussed for estimating its parameters. Finally, applications of ATPSD have been discussed with two real lifetime datasets.

References

  • [1] D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. R. Stat. Soc. Ser. BStat. Methodol., 20 (1958), 102–107.
  • [2] M. E., Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its Application, Math. Comput. Simulation, 78 (2008), 493–506.
  • [3] R. Shanker, F. Hagos, On modeling of life times data using exponential and Lindley distribution, Biometrics Biostat. Internat. J., 2(4) (2015), 1–5.
  • [4] R. Shanker, Sujatha distribution and its applications, Statist. Transition New Ser., 17(3) (2016), 1–20.
  • [5] R. Shanker, The discrete Poisson-Sujatha distribution, Internat. J. Probab. Stat., 5(1) (2016), 1–9.
  • [6] R. Shanker, F.Hagos, Zero-Truncated Poisson-Sujatha distribution with Applications, J.Ethiopian Statist. Assoc., 24 (2015), 55–63.
  • [7] R. Shanker, F. Hagos, Size- biased Poisson-Sujatha distribution with Applications, Amer. J. Math. Statist., 6(4) 2016, 145-154.
  • [8] R. Shanker, Aquasi Sujatha distribution, Internat. J. Probab. Stat., 5(4) (2016), 89–100.
  • [9] T. Mussie, R.Shanker, A two-Parameter Sujatha distribution, Biometrics Biostat. Internat. J., 7 (3) (2018), 188–197.
  • [10] T. Mussie, R. Shanker, A New two-Parameter Sujatha distribution with properties and applications ,Türkiye Klinikleri J. Biostat., 10 (2) (2018), 96–113.
  • [11] R. Shanker, Akash distribution and its Applications, Internat. J. Probab. Stat., 4(3) (2015), 65–75.
  • [12] M. Shaked, J. G. Shanthikumar, Stochastic Orders and Their Applications, Academic Press, New York, 1994.
  • [13] C. E. Bonferroni, Elementidi Statistcagenerale, Seeber, Firenze, 1930.
  • [14] A. J. Gross, V. A Clark, Survival Distributions: Reliability Applications in the Biometrical Sciences, John Wiley, New York, 1975.
  • [15] J. F., Lawless, Statistical Models and Methods for Life time data,John Wiley and Sons, New York, 2003.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Rama Shanker

Mussie Tesfay This is me

Publication Date April 20, 2019
Submission Date April 18, 2018
Acceptance Date November 29, 2018
Published in Issue Year 2019

Cite

APA Shanker, R., & Tesfay, M. (2019). Another Two-Parameter Sujatha Distribution with Properties and Applications. Journal of Mathematical Sciences and Modelling, 2(1), 1-13. https://doi.org/10.33187/jmsm.416628
AMA Shanker R, Tesfay M. Another Two-Parameter Sujatha Distribution with Properties and Applications. Journal of Mathematical Sciences and Modelling. April 2019;2(1):1-13. doi:10.33187/jmsm.416628
Chicago Shanker, Rama, and Mussie Tesfay. “Another Two-Parameter Sujatha Distribution With Properties and Applications”. Journal of Mathematical Sciences and Modelling 2, no. 1 (April 2019): 1-13. https://doi.org/10.33187/jmsm.416628.
EndNote Shanker R, Tesfay M (April 1, 2019) Another Two-Parameter Sujatha Distribution with Properties and Applications. Journal of Mathematical Sciences and Modelling 2 1 1–13.
IEEE R. Shanker and M. Tesfay, “Another Two-Parameter Sujatha Distribution with Properties and Applications”, Journal of Mathematical Sciences and Modelling, vol. 2, no. 1, pp. 1–13, 2019, doi: 10.33187/jmsm.416628.
ISNAD Shanker, Rama - Tesfay, Mussie. “Another Two-Parameter Sujatha Distribution With Properties and Applications”. Journal of Mathematical Sciences and Modelling 2/1 (April 2019), 1-13. https://doi.org/10.33187/jmsm.416628.
JAMA Shanker R, Tesfay M. Another Two-Parameter Sujatha Distribution with Properties and Applications. Journal of Mathematical Sciences and Modelling. 2019;2:1–13.
MLA Shanker, Rama and Mussie Tesfay. “Another Two-Parameter Sujatha Distribution With Properties and Applications”. Journal of Mathematical Sciences and Modelling, vol. 2, no. 1, 2019, pp. 1-13, doi:10.33187/jmsm.416628.
Vancouver Shanker R, Tesfay M. Another Two-Parameter Sujatha Distribution with Properties and Applications. Journal of Mathematical Sciences and Modelling. 2019;2(1):1-13.

Cited By

On the New Exponentiated-Sujatha Distribution and its Applications
International Journal of Applied Mathematics, Computational Science and Systems Engineering
https://doi.org/10.37394/232026.2024.6.5

A new generalized transmuted distribution
Journal of Applied Mathematics, Statistics and Informatics
https://doi.org/10.2478/jamsi-2022-0013

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.