Research Article
BibTex RIS Cite

On convolution surfaces in Euclidean 3-space

Year 2018, , 86 - 92, 30.09.2018
https://doi.org/10.33187/jmsm.424796

Abstract

In the present paper we study with the convolution surface $C=M\star N$ of a paraboloid $M\subset \mathbb{E}^{3}$ and a parametric surface $N\subset \mathbb{E}^{3}$. We take some spacial surfaces for $N$ such as, surface of revolution, Monge patch and ruled surface and calculate the Gaussian curvature of the convolution surface $C$. Further, we give necessary and sufficient conditions for a convolution surface $C$ to become flat.

References

  • [1] J. Bloomenthal, K. Shoemake, Convolution surfaces, Computer Graphics 25(4) (1991), 251–256.
  • [2] M. Lavicka, B. Bastl, Z. Sir, Reparameterization of curves and surfaces with respect to convolutions, in: Dæhlen, M., et al.(Eds.), MMCS 2008. In: Lecture Notes in Computer Science, 5862, 2010, 285-298.
  • [3] M. Peternell, T. Steiner, Minkowski sum boundary surfaces of 3D-objects, Graphical Models 69 (2007), 180–190.
  • [4] M. Peternell, F. Manhart, The Convolution of a Paraboloid and a Parametrized Surface, www.dmg.tuwien.ac.at/geom/peternell/parsurf article.pdf
  • [5] Z. Sir, J. Gravesen, B. J¨uttler, Computing Convolutions and Minkowski sums via Support Functions, Industrial Geometry, FSP Report 29, 2006.
  • [6] J. Vrsek, M. Lavicka, On convolutions of algebraic curves, J. Sym. Comp. 45 (2010), 657–676.
Year 2018, , 86 - 92, 30.09.2018
https://doi.org/10.33187/jmsm.424796

Abstract

References

  • [1] J. Bloomenthal, K. Shoemake, Convolution surfaces, Computer Graphics 25(4) (1991), 251–256.
  • [2] M. Lavicka, B. Bastl, Z. Sir, Reparameterization of curves and surfaces with respect to convolutions, in: Dæhlen, M., et al.(Eds.), MMCS 2008. In: Lecture Notes in Computer Science, 5862, 2010, 285-298.
  • [3] M. Peternell, T. Steiner, Minkowski sum boundary surfaces of 3D-objects, Graphical Models 69 (2007), 180–190.
  • [4] M. Peternell, F. Manhart, The Convolution of a Paraboloid and a Parametrized Surface, www.dmg.tuwien.ac.at/geom/peternell/parsurf article.pdf
  • [5] Z. Sir, J. Gravesen, B. J¨uttler, Computing Convolutions and Minkowski sums via Support Functions, Industrial Geometry, FSP Report 29, 2006.
  • [6] J. Vrsek, M. Lavicka, On convolutions of algebraic curves, J. Sym. Comp. 45 (2010), 657–676.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Selin Aydöner This is me

Kadri Arslan

Publication Date September 30, 2018
Submission Date May 18, 2018
Acceptance Date September 24, 2018
Published in Issue Year 2018

Cite

APA Aydöner, S., & Arslan, K. (2018). On convolution surfaces in Euclidean 3-space. Journal of Mathematical Sciences and Modelling, 1(2), 86-92. https://doi.org/10.33187/jmsm.424796
AMA Aydöner S, Arslan K. On convolution surfaces in Euclidean 3-space. Journal of Mathematical Sciences and Modelling. September 2018;1(2):86-92. doi:10.33187/jmsm.424796
Chicago Aydöner, Selin, and Kadri Arslan. “On Convolution Surfaces in Euclidean 3-Space”. Journal of Mathematical Sciences and Modelling 1, no. 2 (September 2018): 86-92. https://doi.org/10.33187/jmsm.424796.
EndNote Aydöner S, Arslan K (September 1, 2018) On convolution surfaces in Euclidean 3-space. Journal of Mathematical Sciences and Modelling 1 2 86–92.
IEEE S. Aydöner and K. Arslan, “On convolution surfaces in Euclidean 3-space”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, pp. 86–92, 2018, doi: 10.33187/jmsm.424796.
ISNAD Aydöner, Selin - Arslan, Kadri. “On Convolution Surfaces in Euclidean 3-Space”. Journal of Mathematical Sciences and Modelling 1/2 (September 2018), 86-92. https://doi.org/10.33187/jmsm.424796.
JAMA Aydöner S, Arslan K. On convolution surfaces in Euclidean 3-space. Journal of Mathematical Sciences and Modelling. 2018;1:86–92.
MLA Aydöner, Selin and Kadri Arslan. “On Convolution Surfaces in Euclidean 3-Space”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, 2018, pp. 86-92, doi:10.33187/jmsm.424796.
Vancouver Aydöner S, Arslan K. On convolution surfaces in Euclidean 3-space. Journal of Mathematical Sciences and Modelling. 2018;1(2):86-92.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.