Research Article
BibTex RIS Cite
Year 2021, , 1 - 6, 30.04.2021
https://doi.org/10.33187/jmsm.815125

Abstract

Supporting Institution

Van Yüzüncü Yıl Üniversitesi

Project Number

FBA-2017-5435

Thanks

Van Yüzüncü Yıl Üniversitesi BAP'a desteklerinden dolayı teşekkür ederiz.

References

  • [1] D. Stewart, A platform with six degrees of freedom, UK Inst. Mech. Eng. Proc., 180(15) (1965), 371-386.
  • [2] Y.A. Alyushin, S.A. Elenev, Mathematical model of Stewart platform motion, J. Mach. Manuf. Reliab., 39(4) (2010), 305-312.
  • [3] G. Zhang, Classification of direct kinematics to planar generalized Stewart platforms, Comput. Geom., 45(8) (2012), 458-473.
  • [4] S. Zhibin, M. Tianyu, N. Chao, N. Yijun, A new skeleton model and the motion rhythm analysis for human shoulder complex oriented to rehabilitation robotics, Appl. Bionics Biomechanics, (2018), Article ID 2719631, 15 pages.
  • [5] O. Bottema, B. Roth, Theoretical Kinematics, Dover Publications, New York, 1990.
  • [6] J.M. McCarthy, Geometric Design of Linkages, Springer Verlag, New York, 2000.
  • [7] E. Kreighbaum, K.M. Barthels, Biomechanics, Allyn and Bacon, Boston, 1996.
  • [8] E.Y.K. Ng, H.S. Borovetz, E. Soudah, Z. Sun, Numerical methods and applications in biomechanical modeling, Comput. Math. Methods Med., (2013), Article ID 727830, 2 pages.
  • [9] Y.C. Strauch, Atlas of Hand Anatomy and Clinical Implications, Mosby an Affiliate of Elsevier, China, 2004.

Kinematics of Supination and Pronation with Stewart Platform

Year 2021, , 1 - 6, 30.04.2021
https://doi.org/10.33187/jmsm.815125

Abstract

This paper presents kinematics form of pronation and supination movement. The algorithm of Stewart platform motion can be used to create a new motion of supination (or pronation) motion. Pronation motion can be taken as Stewart motion which has not any rotation on x-axis and y-axis. In this case, pronation motion has only one parameter. Supination movement creates a helix curve. Additionally, the correlation between rotation angle and extension is 1. This allows us to use artificial intelligence in pronation motion. In this article, the algorithm and Matlab applications of pronation motion are given in the concepts of artificial intelligence approach. This is a new and important approach.

Project Number

FBA-2017-5435

References

  • [1] D. Stewart, A platform with six degrees of freedom, UK Inst. Mech. Eng. Proc., 180(15) (1965), 371-386.
  • [2] Y.A. Alyushin, S.A. Elenev, Mathematical model of Stewart platform motion, J. Mach. Manuf. Reliab., 39(4) (2010), 305-312.
  • [3] G. Zhang, Classification of direct kinematics to planar generalized Stewart platforms, Comput. Geom., 45(8) (2012), 458-473.
  • [4] S. Zhibin, M. Tianyu, N. Chao, N. Yijun, A new skeleton model and the motion rhythm analysis for human shoulder complex oriented to rehabilitation robotics, Appl. Bionics Biomechanics, (2018), Article ID 2719631, 15 pages.
  • [5] O. Bottema, B. Roth, Theoretical Kinematics, Dover Publications, New York, 1990.
  • [6] J.M. McCarthy, Geometric Design of Linkages, Springer Verlag, New York, 2000.
  • [7] E. Kreighbaum, K.M. Barthels, Biomechanics, Allyn and Bacon, Boston, 1996.
  • [8] E.Y.K. Ng, H.S. Borovetz, E. Soudah, Z. Sun, Numerical methods and applications in biomechanical modeling, Comput. Math. Methods Med., (2013), Article ID 727830, 2 pages.
  • [9] Y.C. Strauch, Atlas of Hand Anatomy and Clinical Implications, Mosby an Affiliate of Elsevier, China, 2004.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Bülent Karakaş 0000-0002-3915-6526

Şenay Baydaş

Project Number FBA-2017-5435
Publication Date April 30, 2021
Submission Date October 22, 2020
Acceptance Date March 12, 2021
Published in Issue Year 2021

Cite

APA Karakaş, B., & Baydaş, Ş. (2021). Kinematics of Supination and Pronation with Stewart Platform. Journal of Mathematical Sciences and Modelling, 4(1), 1-6. https://doi.org/10.33187/jmsm.815125
AMA Karakaş B, Baydaş Ş. Kinematics of Supination and Pronation with Stewart Platform. Journal of Mathematical Sciences and Modelling. April 2021;4(1):1-6. doi:10.33187/jmsm.815125
Chicago Karakaş, Bülent, and Şenay Baydaş. “Kinematics of Supination and Pronation With Stewart Platform”. Journal of Mathematical Sciences and Modelling 4, no. 1 (April 2021): 1-6. https://doi.org/10.33187/jmsm.815125.
EndNote Karakaş B, Baydaş Ş (April 1, 2021) Kinematics of Supination and Pronation with Stewart Platform. Journal of Mathematical Sciences and Modelling 4 1 1–6.
IEEE B. Karakaş and Ş. Baydaş, “Kinematics of Supination and Pronation with Stewart Platform”, Journal of Mathematical Sciences and Modelling, vol. 4, no. 1, pp. 1–6, 2021, doi: 10.33187/jmsm.815125.
ISNAD Karakaş, Bülent - Baydaş, Şenay. “Kinematics of Supination and Pronation With Stewart Platform”. Journal of Mathematical Sciences and Modelling 4/1 (April 2021), 1-6. https://doi.org/10.33187/jmsm.815125.
JAMA Karakaş B, Baydaş Ş. Kinematics of Supination and Pronation with Stewart Platform. Journal of Mathematical Sciences and Modelling. 2021;4:1–6.
MLA Karakaş, Bülent and Şenay Baydaş. “Kinematics of Supination and Pronation With Stewart Platform”. Journal of Mathematical Sciences and Modelling, vol. 4, no. 1, 2021, pp. 1-6, doi:10.33187/jmsm.815125.
Vancouver Karakaş B, Baydaş Ş. Kinematics of Supination and Pronation with Stewart Platform. Journal of Mathematical Sciences and Modelling. 2021;4(1):1-6.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.