Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 33 - 38, 27.05.2018
https://doi.org/10.33187/jmsm.419917

Abstract

References

  • [1] S. Abbas, W. Albarakati and M. Benchohra, Successive approximations for functional evolution equations and inclusions, J. Nonlinear Funct. Anal., Vol. 2017 (2017), Article ID 39, pp. 1-13.
  • [2] S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Springer, Cham, 2015.
  • [3] N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1991.
  • [4] S. Baghli and M. Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay, Differential Integral Equations, 23 (2010), 31–50.
  • [5] S. Baghli and M. Benchohra, Multivalued evolution equations with infinite delay in Fr´echet spaces, Electron. J. Qual. Theo. Differ. Equ. 2008, No. 33, 24 pp.
  • [6] A. Baliki and M. Benchohra, Global existence and asymptotic behaviour for functional evolution equations, J. Appl. Anal. Comput. 4 (2) (2014), 129–138.
  • [7] A. Baliki and M. Benchohra, Global existence and stability for neutral functional evolution equations, Rev. Roumaine Math. Pures Appl. LX (1) (2015), 71-82.
  • [8] M. Benchohra and I. Medjadj, Global existence results for second order neutral functional differential equation with state-dependent delay. Comment. Math. Univ. Carolin. 57 (2016), 169-183.
  • [9] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math. 108 (1998), 109-138.
  • [10] S. Dudek, Fixed point theorems in Fr´echet Algebras and Fr´echet spaces and applications to nonlinear integral equations, Appl. Anal. Discrete Math., 11 (2017), 340-357.
  • [11] S. Dudek and L. Olszowy, Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces, V. 2015, Article ID 471235, 9 pages.
  • [12] A. Freidman, Partial Differential Equations, Holt, Rinehat and Winston, New York, 1969.
  • [13] M. Frigon and A. Granas, R´esultats de type Leray-Schauder pour des contractions sur des espaces de Fr´echet, Ann. Sci. Math. Qu´ebec 22 (2) (1998), 161-168.
  • [14] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.
  • [15] H. M¨onch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4(1980), 985-999.
  • [16] L. Olszowy and S. We¸drychowicz, Mild solutions of semilinear evolution equation on an unbounded interval and their applications, Nonlinear Anal. 72 (2010), 2119-2126.
  • [17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
  • [18] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996. [19] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin, 1980.

Evolution equations in Fréchet spaces

Year 2018, Volume: 1 Issue: 1, 33 - 38, 27.05.2018
https://doi.org/10.33187/jmsm.419917

Abstract

This paper deals with the existence of mild solutions for a class of evolution equations. The technique used is a generalization of the classical Darbo fixed point theorem for Fr\'{e}chet spaces associated with the concept of measure of noncompactness.

References

  • [1] S. Abbas, W. Albarakati and M. Benchohra, Successive approximations for functional evolution equations and inclusions, J. Nonlinear Funct. Anal., Vol. 2017 (2017), Article ID 39, pp. 1-13.
  • [2] S. Abbas and M. Benchohra, Advanced Functional Evolution Equations and Inclusions, Springer, Cham, 2015.
  • [3] N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1991.
  • [4] S. Baghli and M. Benchohra, Global uniqueness results for partial functional and neutral functional evolution equations with infinite delay, Differential Integral Equations, 23 (2010), 31–50.
  • [5] S. Baghli and M. Benchohra, Multivalued evolution equations with infinite delay in Fr´echet spaces, Electron. J. Qual. Theo. Differ. Equ. 2008, No. 33, 24 pp.
  • [6] A. Baliki and M. Benchohra, Global existence and asymptotic behaviour for functional evolution equations, J. Appl. Anal. Comput. 4 (2) (2014), 129–138.
  • [7] A. Baliki and M. Benchohra, Global existence and stability for neutral functional evolution equations, Rev. Roumaine Math. Pures Appl. LX (1) (2015), 71-82.
  • [8] M. Benchohra and I. Medjadj, Global existence results for second order neutral functional differential equation with state-dependent delay. Comment. Math. Univ. Carolin. 57 (2016), 169-183.
  • [9] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math. 108 (1998), 109-138.
  • [10] S. Dudek, Fixed point theorems in Fr´echet Algebras and Fr´echet spaces and applications to nonlinear integral equations, Appl. Anal. Discrete Math., 11 (2017), 340-357.
  • [11] S. Dudek and L. Olszowy, Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces, V. 2015, Article ID 471235, 9 pages.
  • [12] A. Freidman, Partial Differential Equations, Holt, Rinehat and Winston, New York, 1969.
  • [13] M. Frigon and A. Granas, R´esultats de type Leray-Schauder pour des contractions sur des espaces de Fr´echet, Ann. Sci. Math. Qu´ebec 22 (2) (1998), 161-168.
  • [14] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.
  • [15] H. M¨onch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4(1980), 985-999.
  • [16] L. Olszowy and S. We¸drychowicz, Mild solutions of semilinear evolution equation on an unbounded interval and their applications, Nonlinear Anal. 72 (2010), 2119-2126.
  • [17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
  • [18] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996. [19] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin, 1980.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Said Abbas This is me

Amaria Arara This is me

Mouffak Benchohra

Fatima Mesri This is me

Publication Date May 27, 2018
Submission Date April 30, 2018
Acceptance Date June 1, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Abbas, S., Arara, A., Benchohra, M., Mesri, F. (2018). Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling, 1(1), 33-38. https://doi.org/10.33187/jmsm.419917
AMA Abbas S, Arara A, Benchohra M, Mesri F. Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling. May 2018;1(1):33-38. doi:10.33187/jmsm.419917
Chicago Abbas, Said, Amaria Arara, Mouffak Benchohra, and Fatima Mesri. “Evolution Equations in Fréchet Spaces”. Journal of Mathematical Sciences and Modelling 1, no. 1 (May 2018): 33-38. https://doi.org/10.33187/jmsm.419917.
EndNote Abbas S, Arara A, Benchohra M, Mesri F (May 1, 2018) Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling 1 1 33–38.
IEEE S. Abbas, A. Arara, M. Benchohra, and F. Mesri, “Evolution equations in Fréchet spaces”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 1, pp. 33–38, 2018, doi: 10.33187/jmsm.419917.
ISNAD Abbas, Said et al. “Evolution Equations in Fréchet Spaces”. Journal of Mathematical Sciences and Modelling 1/1 (May 2018), 33-38. https://doi.org/10.33187/jmsm.419917.
JAMA Abbas S, Arara A, Benchohra M, Mesri F. Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling. 2018;1:33–38.
MLA Abbas, Said et al. “Evolution Equations in Fréchet Spaces”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 1, 2018, pp. 33-38, doi:10.33187/jmsm.419917.
Vancouver Abbas S, Arara A, Benchohra M, Mesri F. Evolution equations in Fréchet spaces. Journal of Mathematical Sciences and Modelling. 2018;1(1):33-8.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.