Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 2, 105 - 130, 30.09.2018
https://doi.org/10.33187/jmsm.435466

Abstract

References

  • [1] R. Abraham and J. Marsden, Foundations of Mechanics, Second Edition, Benjamin Cummings, NY
  • [2] L.M. Alonso, A.B. Shabat, Hydrodynamic reductions and solutions of a universal hierarchy, Theor. Math. Phys,104 (2004), 1073-1085
  • [3] V.I. Arnold, Mathematical Methods of Classical Mechanics., Springer, NY, 1978
  • [4] D. Blackmore, A.K. Prykarpatsky, Dark Equations and Their Light Integrability, Journal of Nonlinear Mathematical Physics, Vol. 21, No. 3 (2014), 407-428
  • [5] D. Blackmore, A.K. Prykarpatsky and V.H. Samoylenko, Nonlinear dynamical systems of mathematical physics, World Scientific Publisher, NJ, USA, 2011
  • [6] M. Błaszak, Classical R-matrices on Poisson algebras and related dispersionless systems, Phys. Lett. A 297(3-4) (2002) 191–195
  • [7] M. Błaszak and B.M. Szablikowski, Classical R-matrix theory of dispersionless systems: II. (2 + 1) dimension theory, J. Phys. A: Math. Gen. 35 (2002), 10345
  • [8] L.V. Bogdanov, Interpolating differential reductions of multidimensional integrable hierarchies, TMF, 2011, Volume 167, Number 3, 354–363
  • [9] L.V. Bogdanov, V.S. Dryuma, S.V. Manakov, Dunajski generalization of the second heavenly equation: dressing method and the hierarchy, J. Phys. A: Math. Theor. 40 (2007), 14383-14393
  • [10] L.V. Bogdanov, B.G. Konopelchenko, On the heavenly equation and its reductions, J. Phys. A, Math. Gen. 39 (2006), 11793-11802
  • [11] L.V. Bogdanov, M.V. Pavlov, Linearly degenerate hierarchies of quasiclassical SDYM type, arXiv:1603.00238v2 [nlin.SI] 15 Mar 2016
  • [12] A.J. Bruce, K. Grabowska, J. Grabowski, Remarks on contact and Jacobi geometry. SIGMA 13, 059 (2017);(arXiv:1507.05405)
  • [13] M.A. Buhl, Surles operateurs differentieles permutables ou non, Bull. des Sc.Math.,1928, S.2, t. LII, p. 353-361
  • [14] M.A. Buhl, Apercus modernes sur la theorie des groupes continue et finis, Mem. des Sc. Math., fasc. XXXIII, Paris, 1928
  • [15] M.A. Buhl, Apercus modernes sur la theorie des groupes continue et finis, Mem. des Sc. Math., fasc. XXXIII, Paris, 1928
  • [16] P.A. Burovskiy, E.V. Ferapontov, S.P. Tsarev, Second order quasilinear PDEs and conformal structures in projective space, Int. J. Math. 21 (2010), no. 6, 799–841, arXiv:0802.2626
  • [17] A. Cartan, Differential Forms. Dover Publisher, USA, 1971
  • [18] Earl A. Coddington, Norman Levinson, Theory of ordinary differential equations, International series in pure and applied mathematics, McGraw-Hill, 1955
  • [19] B.A. Dubrovin, S.P. Novikov and A.T. Fomenko, Modern Geometry - Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields (Graduate Texts in Mathematics) 2nd ed., Springer, Berlin, 1992
  • [20] M. Dunajski, Anti-self-dual four-manifolds with a parallel real spinor, Proc. Roy. Soc. A, 458 (2002), 1205
  • [21] M. Dunajski, E.V. Ferapontov and B. Kruglikov, On the Einstein-Weyl and conformal self-duality equations. arXiv:1406.0018v3 [nlin.SI] 29 Jun 2015
  • [22] M. Dunajski, W. Kry´nski, Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs, arXiv:1301.0621
  • [23] M. Dunajski, L.J. Mason, P. Tod, Einstein–Weyl geometry, the dKP equation and twistor theory, J. Geom. Phys. 37 (2001), N1-2, 63-93
  • [24] E.V. Ferapontov and B. Kruglikov, Dispersionless integrable systems in 3D and Einstein-Weyl geometry. arXiv:1208.2728v3 [math-ph] 9 May 2013
  • [25] E.V. Ferapontov, B. Kruglikov, V. Novikov, Integrability of dispersionless Hirota type equations and the symplectic Monge-Amp’ere property. rXiv:1707.08070v2 [nlin.SI] 9 Jan 2018
  • [26] E.V. Ferapontov and J. Moss, Linearly degenerate PDEs and quadratic line complexes, arXiv:1204.2777v1 [math.DG] 12 Apr 2012
  • [27] J. Gibbons and S.P. Tsarev, Reductions of the Benney Equations, Physics Letters A, Vol. 211, Issue 1, Pages 19–24, 1996
  • [28] J. Gibbons, S.P. Tsarev, Conformal maps and reductions of the Benney equations, Phys. Lett. A, 258 (1999) 263-270.
  • [29] C. Godbillon, Geometrie Differentielle et Mecanique Analytique. Hermann Publ., Paris, 1969
  • [30] M. Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 9, Springer-Verlag, Berlin, Heidelberg, New York, 363p.
  • [31] O.E. Hentosh, Y.A. Prykarpatsky, D. Blackmore and A.K. Prykarpatski, Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle, Journal of Geometry and Physics, 120 (2017), 208–227
  • [32] A. A. Kirillov, Local Lie algebras, Uspekhi Mat. Nauk, 31 (1976), N4(190), 57–76
  • [33] B.G. Konopelchenko, Grassmanians Gr(N 􀀀1;N +1); closed differential N 􀀀1 forms and N-dimensional integrable systems. arXiv:1208.6129v2 [nlin.SI] 5 Mar 2013
  • [34] I. Krasil’shchik, A natural geometric construction underlying a class of Lax pairs, Lobachevskii J. of Math., 37 (2016) no. 1, 61–66; arXiv:1401.0612
  • [35] I.S. Krasil’shchik1, A. Sergyeyev, O.I. Morozov, Infinitely many nonlocal conservation laws for the ABC equation with A + B +C 6= 0, arXiv:1511.09430v1 [nlin.SI] 30 Nov 2015
  • [36] B.A. Kupershmidt, Dark equations, J. Nonlin. Math. Phys. 8 (2001), 363–445
  • [37] B.A. Kupershmidt, Mathematics of dispersive water waves, Commun. Math. Phys., 99 (1985), 51–73
  • [38] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and non-linear differential equations. Cambridge Univ. Press, Cambridge (2007)
  • [39] S.V. Manakov, P.M. Santini, On the solutions of the second heavenly and Pavlov equations, J. Phys. A: Math. Theor. 42 (2009), 404013 (11pp)
  • [40] O.I. Mokhov, Symplectic and Poissonian geometry on loop spaces of smooth manifolds and integrable equations. Institute for Computer Studies Publ., Moscow-Izhevsk, 2004 (in Ruissian)
  • [41] O.I. Morozov, A two-Component generalization of the integrable rd-Dym equation, SIGMA, 8 (2012), 051-056.
  • [42] O.I. Morozov, A. Sergyeyev, The four-dimensional Martinez-Alonso-Shabat equation: reductions, nonlocal symmetries, and a four-dimensional integrable generalization of the ABC equation, Preprint submitted to JGP, 2014, 11 p.
  • [43] V. G. Mikhalev, On the Hamiltonian formalism for Korteweg–de Vries type hierarchies, Funct. Anal. Appl., 26, Issue 2 (1992), 140–142
  • [44] S.P. Novikov (Editor), Theory of solitons: the Inverse Scattering Method. Springer, 1984
  • [45] P. Olver, Applications of Lie Groups to Differential Equations, Second Edition, Springer-Verlag, New York, 1993
  • [46] V. Ovsienko, Bi-Hamilton nature of the equation utx = uxyuy 􀀀uyyux; arXiv:0802.1818v1 [math-ph] 13 Feb 2008
  • [47] V. Ovsienko, C. Roger, Looped Cotangent Virasoro Algebra and Non-Linear Integrable Systems in Dimension 2 + 1, Commun. Math. Phys. 273 (2007), 357–378
  • [48] M.V. Pavlov, Integrable hydrodynamic chains, J. Math. Phys. 44 (2003), Issue 9, 4134-4156
  • [49] M.V. Pavlov, Classification of integrable Egorov hydrodynamic chains, Theoret. and Math. Phys. 138 (2004), 45-58, nlin.SI/0603055
  • [50] G. Pfeiffer, Generalisation de la methode de Jacobi pour l’integration des systems complets des equations lineaires et homogenes, Comptes Rendues de l’Academie des Sciences de l’URSS, 1930, t. 190, p. 405-409
  • [51] M. G. Pfeiffer, Sur la operateurs d’un systeme complet d’equations lineaires et homogenes aux derivees partielles du premier ordre d’une fonction inconnue, Comptes Rendues de l’Academie des Sciences de l’URSS, 1930, t. 190, p. 909–911
  • [52] M. G. Pfeiffer, La generalization de methode de Jacobi-Mayer, Comptes Rendues de l’Academie des Sciences de l’URSS, 1930, t. 191, p. 1107-1109
  • [53] M. G. Pfeiffer, Sur la permutation des solutions s’une equation lineaire aux derivees partielles du premier ordre, Bull. des Sc. Math., 1928, S.2,t.LII, p. 353-361
  • [54] M. G. Pfeiffer, Quelques additions au probleme de M. Buhl, Atti dei Congresso Internationale dei Matematici, Bologna, 1928, t.III, p. 45-46
  • [55] M. G. Pfeiffer, La construction des operateurs d’une equation lineaire, homogene aux derivees partielles premier ordre, Journal du Cycle Mathematique, Academie des Sciences d’Ukraine, Kyiv, N1, 1931, p. 37-72 (in Ukrainian)
  • [56] J.F. Pleba´nski, Some solutions of complex Einstein equations, J. Math. Phys. 16 (1975), Issue 12, 2395-2402
  • [57] A. Presley and G. Segal, Loop groups, Oxford Mathematical Monographs, Oxford Univresity Press, 1986.
  • [58] N.K. Prykarpatska, D. Blackmore, V.H. Samoylenko, E. Wachnicki, M. Pytel-Kudela, The Cartan-Monge geometric approach to the characteristic
  • method for nonlinear partial differential equations of the first and higher orders. Nonlinear Oscillations, 10(1) (2007), 22-31
  • [59] A.K. Prykarpatsky I.V. Mykytyuk, Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects. Kluwer Academic Publishers, the Netherlands, 1998
  • [60] Ya.A. Prykarpatsky and A.K. Prykarpatski, The integrable heavenly type equations and their Lie-algebraic structure, arXiv:1785057 [nlin.SI] 24 Jan 2017
  • [61] Y.A. Prykarpatsky and A.M. Samoilenko, Algebraic - analytic aspects of integrable nonlinear dynamical systems and their perturbations. Kyiv, Inst. Mathematics Publisher, v. 41, 2002 (in Ukrainian)
  • [62] A.G. Reyman, M.A. Semenov-Tian-Shansky, Integrable Systems, The Computer Research Institute Publ., Moscow-Izhvek, 2003 (in Russian)
  • [63] M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, Tokyo, 1982, Lect. Notes in Num. Anal. 5 (1982), 259–271.
  • [64] M. Sato, and M. Noumi, Soliton equations and the universal Grassmann manifolds, Sophia University Kokyuroku in Math. 18 (1984) (in Japanese).
  • [65] W.K. Schief, Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation, Phys. Lett. A, Volume 223, Issues 1–2, 25 November 1996, 55-62
  • [66] W.K. Schief, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, In Symmetries and Integrability of Difference Equations, P. Clarkson and F. Nijhoff, eds, London Mathematical Society, Lecture Note Series 255, Cambridge University Press (1999) 137-148.
  • [67] A. Sergyeyev and B. M. Szablikowski, Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems, Phys. Lett. A, 372 (2008) 7016-7023
  • [68] B. Szablikowski, Hierarchies of Manakov–Santini Type by Means of Rota-Baxter and Other Identities, SIGMA 12 (2016), 022, 14 pages
  • [69] B. Szablikowski, M. Błaszak, Meromorphic Lax representations of (1+1)-dimensional multi-Hamiltonian dispersionless systems. J. Math. Phys.,47, N9, 2006, 092701
  • [70] A. Sergyeyev, A simple construction of recursion operators for multidimensional dispersionless integrable systems, J. Math. Anal. Appl. 454 (2017), no.2, 468–480; arXiv:1501.01955
  • [71] A. Sergyeyev, New integrable (3+1)-dimensional systems and contact geometry, arXiv:1401.2122v4 [math.AP] 26 Sep 2017
  • [72] M.B. Sheftel1, A.A. Malykh, D. Yazıcı, Recursion operators and bi-Hamiltonian structure of the general heavenly equation, arXiv:1510.03666v3 [math-ph] 25 Jun 2016
  • [73] K. Takasaki and T. Takebe, SDiff(2) Toda equation – Hierarchy, Tau function, and symmetries, Letters in Mathematical Physics 23(3), 205–214 (1991)
  • [74] K. Takasaki and T. Takebe, Integrable Hierarchies and Dispersionless Limit, Reviews in Mathematical Physics 7(05), 743–808 (1995)
  • [75] L.A. Takhtajan, L.D. Faddeev, Hamiltonian Approach in Soliton Theory, Springer, Berlin-Heidelberg, 1987
  • [76] I. Zakharevich, Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs, arXiv:math-ph/0006001

Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application

Year 2018, Volume: 1 Issue: 2, 105 - 130, 30.09.2018
https://doi.org/10.33187/jmsm.435466

Abstract

Our review is devoted to Lie-algebraic structures and integrability properties of an interesting class of nonlinear dynamical systems called the dispersionless heavenly equations, which were initiated by Plebanski and later analyzed in a series of articles. The AKS-algebraic and related $\mathcal{R}$-structure schemes are used to study the orbits of the corresponding co-adjoint actions, which are intimately related to the classical Lie--Poisson structures on them. It is demonstrated that their compatibility condition coincides with the corresponding heavenly equations under consideration. Moreover, all these equations originate in this way and can be represented as a Lax compatibility condition for specially constructed loop vector fields on the torus. The infinite hierarchy of conservations laws related to the heavenly equations is described, and its analytical structure connected with the Casimir invariants, is mentioned. In addition, typical examples of such equations, demonstrating in detail their integrability via the scheme devised herein, are presented. The relationship of a fascinating Lagrange--d'Alembert type mechanical interpretation of the devised integrability scheme with the Lax--Sato equations is also discussed. We pay a special attention to a generalization of the devised Lie-algebraic scheme to a case of loop Lie superalgebras of superconformal diffeomorphisms of the $1|N$-dimensional supertorus. This scheme is applied to constructing the Lax--Sato integrable supersymmetric analogs of the Liouville and Mikhalev-Pavlov heavenly equation for every $N\in\mathbb{N}\backslash\lbrace 4;5\rbrace.$

References

  • [1] R. Abraham and J. Marsden, Foundations of Mechanics, Second Edition, Benjamin Cummings, NY
  • [2] L.M. Alonso, A.B. Shabat, Hydrodynamic reductions and solutions of a universal hierarchy, Theor. Math. Phys,104 (2004), 1073-1085
  • [3] V.I. Arnold, Mathematical Methods of Classical Mechanics., Springer, NY, 1978
  • [4] D. Blackmore, A.K. Prykarpatsky, Dark Equations and Their Light Integrability, Journal of Nonlinear Mathematical Physics, Vol. 21, No. 3 (2014), 407-428
  • [5] D. Blackmore, A.K. Prykarpatsky and V.H. Samoylenko, Nonlinear dynamical systems of mathematical physics, World Scientific Publisher, NJ, USA, 2011
  • [6] M. Błaszak, Classical R-matrices on Poisson algebras and related dispersionless systems, Phys. Lett. A 297(3-4) (2002) 191–195
  • [7] M. Błaszak and B.M. Szablikowski, Classical R-matrix theory of dispersionless systems: II. (2 + 1) dimension theory, J. Phys. A: Math. Gen. 35 (2002), 10345
  • [8] L.V. Bogdanov, Interpolating differential reductions of multidimensional integrable hierarchies, TMF, 2011, Volume 167, Number 3, 354–363
  • [9] L.V. Bogdanov, V.S. Dryuma, S.V. Manakov, Dunajski generalization of the second heavenly equation: dressing method and the hierarchy, J. Phys. A: Math. Theor. 40 (2007), 14383-14393
  • [10] L.V. Bogdanov, B.G. Konopelchenko, On the heavenly equation and its reductions, J. Phys. A, Math. Gen. 39 (2006), 11793-11802
  • [11] L.V. Bogdanov, M.V. Pavlov, Linearly degenerate hierarchies of quasiclassical SDYM type, arXiv:1603.00238v2 [nlin.SI] 15 Mar 2016
  • [12] A.J. Bruce, K. Grabowska, J. Grabowski, Remarks on contact and Jacobi geometry. SIGMA 13, 059 (2017);(arXiv:1507.05405)
  • [13] M.A. Buhl, Surles operateurs differentieles permutables ou non, Bull. des Sc.Math.,1928, S.2, t. LII, p. 353-361
  • [14] M.A. Buhl, Apercus modernes sur la theorie des groupes continue et finis, Mem. des Sc. Math., fasc. XXXIII, Paris, 1928
  • [15] M.A. Buhl, Apercus modernes sur la theorie des groupes continue et finis, Mem. des Sc. Math., fasc. XXXIII, Paris, 1928
  • [16] P.A. Burovskiy, E.V. Ferapontov, S.P. Tsarev, Second order quasilinear PDEs and conformal structures in projective space, Int. J. Math. 21 (2010), no. 6, 799–841, arXiv:0802.2626
  • [17] A. Cartan, Differential Forms. Dover Publisher, USA, 1971
  • [18] Earl A. Coddington, Norman Levinson, Theory of ordinary differential equations, International series in pure and applied mathematics, McGraw-Hill, 1955
  • [19] B.A. Dubrovin, S.P. Novikov and A.T. Fomenko, Modern Geometry - Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields (Graduate Texts in Mathematics) 2nd ed., Springer, Berlin, 1992
  • [20] M. Dunajski, Anti-self-dual four-manifolds with a parallel real spinor, Proc. Roy. Soc. A, 458 (2002), 1205
  • [21] M. Dunajski, E.V. Ferapontov and B. Kruglikov, On the Einstein-Weyl and conformal self-duality equations. arXiv:1406.0018v3 [nlin.SI] 29 Jun 2015
  • [22] M. Dunajski, W. Kry´nski, Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs, arXiv:1301.0621
  • [23] M. Dunajski, L.J. Mason, P. Tod, Einstein–Weyl geometry, the dKP equation and twistor theory, J. Geom. Phys. 37 (2001), N1-2, 63-93
  • [24] E.V. Ferapontov and B. Kruglikov, Dispersionless integrable systems in 3D and Einstein-Weyl geometry. arXiv:1208.2728v3 [math-ph] 9 May 2013
  • [25] E.V. Ferapontov, B. Kruglikov, V. Novikov, Integrability of dispersionless Hirota type equations and the symplectic Monge-Amp’ere property. rXiv:1707.08070v2 [nlin.SI] 9 Jan 2018
  • [26] E.V. Ferapontov and J. Moss, Linearly degenerate PDEs and quadratic line complexes, arXiv:1204.2777v1 [math.DG] 12 Apr 2012
  • [27] J. Gibbons and S.P. Tsarev, Reductions of the Benney Equations, Physics Letters A, Vol. 211, Issue 1, Pages 19–24, 1996
  • [28] J. Gibbons, S.P. Tsarev, Conformal maps and reductions of the Benney equations, Phys. Lett. A, 258 (1999) 263-270.
  • [29] C. Godbillon, Geometrie Differentielle et Mecanique Analytique. Hermann Publ., Paris, 1969
  • [30] M. Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 9, Springer-Verlag, Berlin, Heidelberg, New York, 363p.
  • [31] O.E. Hentosh, Y.A. Prykarpatsky, D. Blackmore and A.K. Prykarpatski, Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle, Journal of Geometry and Physics, 120 (2017), 208–227
  • [32] A. A. Kirillov, Local Lie algebras, Uspekhi Mat. Nauk, 31 (1976), N4(190), 57–76
  • [33] B.G. Konopelchenko, Grassmanians Gr(N 􀀀1;N +1); closed differential N 􀀀1 forms and N-dimensional integrable systems. arXiv:1208.6129v2 [nlin.SI] 5 Mar 2013
  • [34] I. Krasil’shchik, A natural geometric construction underlying a class of Lax pairs, Lobachevskii J. of Math., 37 (2016) no. 1, 61–66; arXiv:1401.0612
  • [35] I.S. Krasil’shchik1, A. Sergyeyev, O.I. Morozov, Infinitely many nonlocal conservation laws for the ABC equation with A + B +C 6= 0, arXiv:1511.09430v1 [nlin.SI] 30 Nov 2015
  • [36] B.A. Kupershmidt, Dark equations, J. Nonlin. Math. Phys. 8 (2001), 363–445
  • [37] B.A. Kupershmidt, Mathematics of dispersive water waves, Commun. Math. Phys., 99 (1985), 51–73
  • [38] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and non-linear differential equations. Cambridge Univ. Press, Cambridge (2007)
  • [39] S.V. Manakov, P.M. Santini, On the solutions of the second heavenly and Pavlov equations, J. Phys. A: Math. Theor. 42 (2009), 404013 (11pp)
  • [40] O.I. Mokhov, Symplectic and Poissonian geometry on loop spaces of smooth manifolds and integrable equations. Institute for Computer Studies Publ., Moscow-Izhevsk, 2004 (in Ruissian)
  • [41] O.I. Morozov, A two-Component generalization of the integrable rd-Dym equation, SIGMA, 8 (2012), 051-056.
  • [42] O.I. Morozov, A. Sergyeyev, The four-dimensional Martinez-Alonso-Shabat equation: reductions, nonlocal symmetries, and a four-dimensional integrable generalization of the ABC equation, Preprint submitted to JGP, 2014, 11 p.
  • [43] V. G. Mikhalev, On the Hamiltonian formalism for Korteweg–de Vries type hierarchies, Funct. Anal. Appl., 26, Issue 2 (1992), 140–142
  • [44] S.P. Novikov (Editor), Theory of solitons: the Inverse Scattering Method. Springer, 1984
  • [45] P. Olver, Applications of Lie Groups to Differential Equations, Second Edition, Springer-Verlag, New York, 1993
  • [46] V. Ovsienko, Bi-Hamilton nature of the equation utx = uxyuy 􀀀uyyux; arXiv:0802.1818v1 [math-ph] 13 Feb 2008
  • [47] V. Ovsienko, C. Roger, Looped Cotangent Virasoro Algebra and Non-Linear Integrable Systems in Dimension 2 + 1, Commun. Math. Phys. 273 (2007), 357–378
  • [48] M.V. Pavlov, Integrable hydrodynamic chains, J. Math. Phys. 44 (2003), Issue 9, 4134-4156
  • [49] M.V. Pavlov, Classification of integrable Egorov hydrodynamic chains, Theoret. and Math. Phys. 138 (2004), 45-58, nlin.SI/0603055
  • [50] G. Pfeiffer, Generalisation de la methode de Jacobi pour l’integration des systems complets des equations lineaires et homogenes, Comptes Rendues de l’Academie des Sciences de l’URSS, 1930, t. 190, p. 405-409
  • [51] M. G. Pfeiffer, Sur la operateurs d’un systeme complet d’equations lineaires et homogenes aux derivees partielles du premier ordre d’une fonction inconnue, Comptes Rendues de l’Academie des Sciences de l’URSS, 1930, t. 190, p. 909–911
  • [52] M. G. Pfeiffer, La generalization de methode de Jacobi-Mayer, Comptes Rendues de l’Academie des Sciences de l’URSS, 1930, t. 191, p. 1107-1109
  • [53] M. G. Pfeiffer, Sur la permutation des solutions s’une equation lineaire aux derivees partielles du premier ordre, Bull. des Sc. Math., 1928, S.2,t.LII, p. 353-361
  • [54] M. G. Pfeiffer, Quelques additions au probleme de M. Buhl, Atti dei Congresso Internationale dei Matematici, Bologna, 1928, t.III, p. 45-46
  • [55] M. G. Pfeiffer, La construction des operateurs d’une equation lineaire, homogene aux derivees partielles premier ordre, Journal du Cycle Mathematique, Academie des Sciences d’Ukraine, Kyiv, N1, 1931, p. 37-72 (in Ukrainian)
  • [56] J.F. Pleba´nski, Some solutions of complex Einstein equations, J. Math. Phys. 16 (1975), Issue 12, 2395-2402
  • [57] A. Presley and G. Segal, Loop groups, Oxford Mathematical Monographs, Oxford Univresity Press, 1986.
  • [58] N.K. Prykarpatska, D. Blackmore, V.H. Samoylenko, E. Wachnicki, M. Pytel-Kudela, The Cartan-Monge geometric approach to the characteristic
  • method for nonlinear partial differential equations of the first and higher orders. Nonlinear Oscillations, 10(1) (2007), 22-31
  • [59] A.K. Prykarpatsky I.V. Mykytyuk, Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects. Kluwer Academic Publishers, the Netherlands, 1998
  • [60] Ya.A. Prykarpatsky and A.K. Prykarpatski, The integrable heavenly type equations and their Lie-algebraic structure, arXiv:1785057 [nlin.SI] 24 Jan 2017
  • [61] Y.A. Prykarpatsky and A.M. Samoilenko, Algebraic - analytic aspects of integrable nonlinear dynamical systems and their perturbations. Kyiv, Inst. Mathematics Publisher, v. 41, 2002 (in Ukrainian)
  • [62] A.G. Reyman, M.A. Semenov-Tian-Shansky, Integrable Systems, The Computer Research Institute Publ., Moscow-Izhvek, 2003 (in Russian)
  • [63] M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, Tokyo, 1982, Lect. Notes in Num. Anal. 5 (1982), 259–271.
  • [64] M. Sato, and M. Noumi, Soliton equations and the universal Grassmann manifolds, Sophia University Kokyuroku in Math. 18 (1984) (in Japanese).
  • [65] W.K. Schief, Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation, Phys. Lett. A, Volume 223, Issues 1–2, 25 November 1996, 55-62
  • [66] W.K. Schief, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, In Symmetries and Integrability of Difference Equations, P. Clarkson and F. Nijhoff, eds, London Mathematical Society, Lecture Note Series 255, Cambridge University Press (1999) 137-148.
  • [67] A. Sergyeyev and B. M. Szablikowski, Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems, Phys. Lett. A, 372 (2008) 7016-7023
  • [68] B. Szablikowski, Hierarchies of Manakov–Santini Type by Means of Rota-Baxter and Other Identities, SIGMA 12 (2016), 022, 14 pages
  • [69] B. Szablikowski, M. Błaszak, Meromorphic Lax representations of (1+1)-dimensional multi-Hamiltonian dispersionless systems. J. Math. Phys.,47, N9, 2006, 092701
  • [70] A. Sergyeyev, A simple construction of recursion operators for multidimensional dispersionless integrable systems, J. Math. Anal. Appl. 454 (2017), no.2, 468–480; arXiv:1501.01955
  • [71] A. Sergyeyev, New integrable (3+1)-dimensional systems and contact geometry, arXiv:1401.2122v4 [math.AP] 26 Sep 2017
  • [72] M.B. Sheftel1, A.A. Malykh, D. Yazıcı, Recursion operators and bi-Hamiltonian structure of the general heavenly equation, arXiv:1510.03666v3 [math-ph] 25 Jun 2016
  • [73] K. Takasaki and T. Takebe, SDiff(2) Toda equation – Hierarchy, Tau function, and symmetries, Letters in Mathematical Physics 23(3), 205–214 (1991)
  • [74] K. Takasaki and T. Takebe, Integrable Hierarchies and Dispersionless Limit, Reviews in Mathematical Physics 7(05), 743–808 (1995)
  • [75] L.A. Takhtajan, L.D. Faddeev, Hamiltonian Approach in Soliton Theory, Springer, Berlin-Heidelberg, 1987
  • [76] I. Zakharevich, Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs, arXiv:math-ph/0006001
There are 77 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Oksana E. Hentosh This is me

Yarema A. Prykarpatski This is me

Denis Blackmore This is me

Anatolij Prykarpatski

Publication Date September 30, 2018
Submission Date June 21, 2018
Acceptance Date September 20, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Hentosh, O. E., Prykarpatski, Y. A., Blackmore, D., Prykarpatski, A. (2018). Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application. Journal of Mathematical Sciences and Modelling, 1(2), 105-130. https://doi.org/10.33187/jmsm.435466
AMA Hentosh OE, Prykarpatski YA, Blackmore D, Prykarpatski A. Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application. Journal of Mathematical Sciences and Modelling. September 2018;1(2):105-130. doi:10.33187/jmsm.435466
Chicago Hentosh, Oksana E., Yarema A. Prykarpatski, Denis Blackmore, and Anatolij Prykarpatski. “Generalized Lie-Algebraic Structures Related to Integrable Dispersionless Dynamical Systems and Their Application”. Journal of Mathematical Sciences and Modelling 1, no. 2 (September 2018): 105-30. https://doi.org/10.33187/jmsm.435466.
EndNote Hentosh OE, Prykarpatski YA, Blackmore D, Prykarpatski A (September 1, 2018) Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application. Journal of Mathematical Sciences and Modelling 1 2 105–130.
IEEE O. E. Hentosh, Y. A. Prykarpatski, D. Blackmore, and A. Prykarpatski, “Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application”, Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, pp. 105–130, 2018, doi: 10.33187/jmsm.435466.
ISNAD Hentosh, Oksana E. et al. “Generalized Lie-Algebraic Structures Related to Integrable Dispersionless Dynamical Systems and Their Application”. Journal of Mathematical Sciences and Modelling 1/2 (September 2018), 105-130. https://doi.org/10.33187/jmsm.435466.
JAMA Hentosh OE, Prykarpatski YA, Blackmore D, Prykarpatski A. Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application. Journal of Mathematical Sciences and Modelling. 2018;1:105–130.
MLA Hentosh, Oksana E. et al. “Generalized Lie-Algebraic Structures Related to Integrable Dispersionless Dynamical Systems and Their Application”. Journal of Mathematical Sciences and Modelling, vol. 1, no. 2, 2018, pp. 105-30, doi:10.33187/jmsm.435466.
Vancouver Hentosh OE, Prykarpatski YA, Blackmore D, Prykarpatski A. Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application. Journal of Mathematical Sciences and Modelling. 2018;1(2):105-30.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.