Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 2, 112 - 116, 30.08.2019
https://doi.org/10.33187/jmsm.435481

Abstract

References

  • [1] Agarwal, RP, Zhou, H, He, Y: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59(3), 1095-1100 (2010)
  • [2] Abdeljawad, T., On Conformable Fractional Calculus,Journal of Computational ad Applied Mathematics,Vol. 279, 1 May 2015, 57-66, arXiv: 1402.6892v1 [math D, S] 27 Feb 2014.
  • [3] Balakrishnan, A. V., Fractional Powers Of Closed Operators And The Semigroups Generated By Them, Pacific Journal of Mathematics 10, pp. 419-439, 1960.
  • [4] TRAVIS. C. C and WEBB. G. F. Cosine Families and abstract nonlinear second order differential equations. Acta Mathematica Academiae Seientiarum Hungaricae Tomus 32 (3–4), (1978), 75–96.
  • [5] Mohammed AL Horani. Roshdi Khalil and Thabet Abdeljawad. Conformable Fractional Semigroups of Operators. arXiv:1502.06014v1 [math.FA] 21 Nov 2014 Conformable.
  • [6] Khalil, R., Al Horani, M., Yousef. A. and Sababheh, M., A new Definition Of Fractional Derivative, J. Comput. Appl. Math. 264. pp. 65?0, 2014.
  • [7] Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
  • [8] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differntial Equations, Springer-Verlag, 1983.

Conformable Fractional Cosine Families of Operators

Year 2019, Volume: 2 Issue: 2, 112 - 116, 30.08.2019
https://doi.org/10.33187/jmsm.435481

Abstract

In this paper we are concerned with the problem \begin{eqnarray*}\begin{cases} u^{(\alpha)}(t)=Au(t)+f(t,u(t))& t\in [0,T]\\ u(0)=u_0, D^{\alpha}u(0)=u_1\end{cases}\end{eqnarray*}  \begin{eqnarray*}     \begin{cases}     u^{(\alpha)}(t)=Au(t)+f(t,u(t))& t\in [0,T]\\     u(0)=u_0, D^{\alpha}u(0)=u_1     \end{cases}   \label{pb1} \end{eqnarray*}   Where $\alpha\in (1,2]$, and we use the conformable derivative. We give the notion of $\alpha$-Cosine families and proveded the existence and uniqueness of the problem 0.1.

References

  • [1] Agarwal, RP, Zhou, H, He, Y: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59(3), 1095-1100 (2010)
  • [2] Abdeljawad, T., On Conformable Fractional Calculus,Journal of Computational ad Applied Mathematics,Vol. 279, 1 May 2015, 57-66, arXiv: 1402.6892v1 [math D, S] 27 Feb 2014.
  • [3] Balakrishnan, A. V., Fractional Powers Of Closed Operators And The Semigroups Generated By Them, Pacific Journal of Mathematics 10, pp. 419-439, 1960.
  • [4] TRAVIS. C. C and WEBB. G. F. Cosine Families and abstract nonlinear second order differential equations. Acta Mathematica Academiae Seientiarum Hungaricae Tomus 32 (3–4), (1978), 75–96.
  • [5] Mohammed AL Horani. Roshdi Khalil and Thabet Abdeljawad. Conformable Fractional Semigroups of Operators. arXiv:1502.06014v1 [math.FA] 21 Nov 2014 Conformable.
  • [6] Khalil, R., Al Horani, M., Yousef. A. and Sababheh, M., A new Definition Of Fractional Derivative, J. Comput. Appl. Math. 264. pp. 65?0, 2014.
  • [7] Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
  • [8] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differntial Equations, Springer-Verlag, 1983.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Elomari M'hamed

Said Melliani This is me

L. S. Chadli

Publication Date August 30, 2019
Submission Date June 21, 2018
Acceptance Date January 21, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA M’hamed, E., Melliani, S., & Chadli, L. S. (2019). Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling, 2(2), 112-116. https://doi.org/10.33187/jmsm.435481
AMA M’hamed E, Melliani S, Chadli LS. Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling. August 2019;2(2):112-116. doi:10.33187/jmsm.435481
Chicago M’hamed, Elomari, Said Melliani, and L. S. Chadli. “Conformable Fractional Cosine Families of Operators”. Journal of Mathematical Sciences and Modelling 2, no. 2 (August 2019): 112-16. https://doi.org/10.33187/jmsm.435481.
EndNote M’hamed E, Melliani S, Chadli LS (August 1, 2019) Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling 2 2 112–116.
IEEE E. M’hamed, S. Melliani, and L. S. Chadli, “Conformable Fractional Cosine Families of Operators”, Journal of Mathematical Sciences and Modelling, vol. 2, no. 2, pp. 112–116, 2019, doi: 10.33187/jmsm.435481.
ISNAD M’hamed, Elomari et al. “Conformable Fractional Cosine Families of Operators”. Journal of Mathematical Sciences and Modelling 2/2 (August 2019), 112-116. https://doi.org/10.33187/jmsm.435481.
JAMA M’hamed E, Melliani S, Chadli LS. Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling. 2019;2:112–116.
MLA M’hamed, Elomari et al. “Conformable Fractional Cosine Families of Operators”. Journal of Mathematical Sciences and Modelling, vol. 2, no. 2, 2019, pp. 112-6, doi:10.33187/jmsm.435481.
Vancouver M’hamed E, Melliani S, Chadli LS. Conformable Fractional Cosine Families of Operators. Journal of Mathematical Sciences and Modelling. 2019;2(2):112-6.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.