Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 1, 25 - 37, 30.04.2021
https://doi.org/10.33187/jmsm.843626

Abstract

References

  • [1] G.-M. Tang, L.-X. Hu, G. Ma, Global Stability of a Rational Difference Equation, Discrete Dynamics in Nature and Society, Volume 2010.
  • [2] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations With Open Problems And Conjectures, Chapman. Hall/CRC, Boca Raton, 2008.
  • [3] M. Saleh, N. Alkoumi, A. Farhat, On the dynamics of a rational difference equation $ x_{n+1}=\frac{ \alpha +\beta x_{n}+\gamma x_{n-k}}{Bx_{n}+Cx_{n-k}}$, Chaos Soliton, (2017), 76-84.
  • [4] M. Saleh, A. Farhat, Global asymptotic stability of the higher order equation $x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}}$, J. Appl. Math. Comput, (2017), 135-148, doi: 10.1007/s12190-016-1029-4.
  • [5] M. Saleh, A.Asad, Dynamics of kth order rational difference equation, J. Appl. Nonlinear Dyn., (2021), 125-149, doi: 10.5890/JAND.2021.03.008.
  • [6] M. Saleh, S.Hirzallah, Dynamics and bifurcation of a second order rational difference equation with quadratic terms, J. Appl. Nonlinear Dyn., (to appear).
  • [7] M. Saleh, S.Hirzallah, Dynamics and bifurcation of a second order quadratic rational difference equation, J. Math. Sci. Model., 3(3) (2020), 102-119.
  • [8] S. Elaydi, An Introduction to Difference Equations, 3rd Edition, Springer, 2000.
  • [9] A. Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd Ed., Springer-Verlag, 1998.

Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$

Year 2021, Volume: 4 Issue: 1, 25 - 37, 30.04.2021
https://doi.org/10.33187/jmsm.843626

Abstract

In this paper, we study dynamics and bifurcation of the third order rational difference equation \begin{eqnarray*} x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+Cx_{n-2}}, ~~n=0, 1, 2, \ldots \end{eqnarray*} with positive parameters $\alpha, \beta, A, B, C$ and non-negative initial conditions $\{x_{-k}, x_{-k+1}, \ldots, x_{0}\}$. We study the dynamic behavior, the sufficient conditions for the existence of the Neimark-Sacker bifurcation, and the direction of the Neimark-Sacker bifurcation. Then, we give numerical examples with figures to support our results.

References

  • [1] G.-M. Tang, L.-X. Hu, G. Ma, Global Stability of a Rational Difference Equation, Discrete Dynamics in Nature and Society, Volume 2010.
  • [2] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations With Open Problems And Conjectures, Chapman. Hall/CRC, Boca Raton, 2008.
  • [3] M. Saleh, N. Alkoumi, A. Farhat, On the dynamics of a rational difference equation $ x_{n+1}=\frac{ \alpha +\beta x_{n}+\gamma x_{n-k}}{Bx_{n}+Cx_{n-k}}$, Chaos Soliton, (2017), 76-84.
  • [4] M. Saleh, A. Farhat, Global asymptotic stability of the higher order equation $x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}}$, J. Appl. Math. Comput, (2017), 135-148, doi: 10.1007/s12190-016-1029-4.
  • [5] M. Saleh, A.Asad, Dynamics of kth order rational difference equation, J. Appl. Nonlinear Dyn., (2021), 125-149, doi: 10.5890/JAND.2021.03.008.
  • [6] M. Saleh, S.Hirzallah, Dynamics and bifurcation of a second order rational difference equation with quadratic terms, J. Appl. Nonlinear Dyn., (to appear).
  • [7] M. Saleh, S.Hirzallah, Dynamics and bifurcation of a second order quadratic rational difference equation, J. Math. Sci. Model., 3(3) (2020), 102-119.
  • [8] S. Elaydi, An Introduction to Difference Equations, 3rd Edition, Springer, 2000.
  • [9] A. Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd Ed., Springer-Verlag, 1998.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Batool Raddad This is me

Mohammad Saleh

Publication Date April 30, 2021
Submission Date December 19, 2020
Acceptance Date April 19, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Raddad, B., & Saleh, M. (2021). Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$. Journal of Mathematical Sciences and Modelling, 4(1), 25-37. https://doi.org/10.33187/jmsm.843626
AMA Raddad B, Saleh M. Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$. Journal of Mathematical Sciences and Modelling. April 2021;4(1):25-37. doi:10.33187/jmsm.843626
Chicago Raddad, Batool, and Mohammad Saleh. “Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$”. Journal of Mathematical Sciences and Modelling 4, no. 1 (April 2021): 25-37. https://doi.org/10.33187/jmsm.843626.
EndNote Raddad B, Saleh M (April 1, 2021) Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$. Journal of Mathematical Sciences and Modelling 4 1 25–37.
IEEE B. Raddad and M. Saleh, “Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$”, Journal of Mathematical Sciences and Modelling, vol. 4, no. 1, pp. 25–37, 2021, doi: 10.33187/jmsm.843626.
ISNAD Raddad, Batool - Saleh, Mohammad. “Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$”. Journal of Mathematical Sciences and Modelling 4/1 (April 2021), 25-37. https://doi.org/10.33187/jmsm.843626.
JAMA Raddad B, Saleh M. Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$. Journal of Mathematical Sciences and Modelling. 2021;4:25–37.
MLA Raddad, Batool and Mohammad Saleh. “Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$”. Journal of Mathematical Sciences and Modelling, vol. 4, no. 1, 2021, pp. 25-37, doi:10.33187/jmsm.843626.
Vancouver Raddad B, Saleh M. Dynamics and Bifurcation of $x_{n+1}=\frac{\alpha+\beta x_{n-2}}{A+Bx_{n}+C x_{n-2}}$. Journal of Mathematical Sciences and Modelling. 2021;4(1):25-37.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.