Research Article
BibTex RIS Cite

Analytic Five-Body Gerono Lemniscata Choreography

Year 2025, Volume: 8 Issue: 4, 195 - 200
https://doi.org/10.33187/jmsm.1725741

Abstract

The trajectories and interaction forces of five bodies with equal masses are analytically described. The bodies follow a choreographic motion in a figure of eight, Gerono lemniscata periodic orbit without collisions. The forces are a linear combination of pairwise distances with either attractive or repulsive coefficients. The center of mass is fixed at the origin. The moment of inertia, as well as the kinetic and potential energies of the system, are constant. Notably, the angular momentum is zero just as in the Bernoulli Lemniscata parametrized by elliptic functions. The number of bodies in the choreography can be increased in a straightforward way. The orbit can be readily generalized to symmetric chains with an arbitrary number of loops.

Supporting Institution

The author acknowledges support by SECIHTI, project CF-2023-I-1864.

Project Number

CONAHCyT CF-2023-I-1864

References

  • [1] C. Moore, Braids in classical dynamics, Phys. Rev. Lett., 70 (1993), 3675-3679. https://doi.org/10.1103/PhysRevLett.70.3675
  • [2] A. Chenciner, R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152(3) (2000), 881-901.
  • [3] C. Simo, New Families of Solutions in N-Body Problems, European Congress of Mathematics, (2001), 101-115.
  • [4] T. Fujiwara, H. Fukuda, H. Ozaki, Choreographic three bodies on the lemniscate, J. Phys. A Math. Gen., 36 (2003), Article ID 2791. https://doi.org/10.1088/0305-4470/36/11/310
  • [5] J. C. Lopez Vieyra, Five-body choreography on the algebraic lemniscate is a potential motion, Phys. Lett. A, 383(15) (2019), 1711-1715. https://doi.org/10.1016/j.physleta.2019.03.004
  • [6] I. Popescu, L. Luca, S. S. Ghimisi. Mechanisms that generate Gerono’s lemniscate, IOP Conference Series: Materials Science and Engineering, 514 (2019), Article ID 012035. https://doi.org/10.1088/1757-899X/514/1/012035
  • [7] M. Fernandez-Guasti, The components exponential function in scator hypercomplex space: Planetary elliptical motion and three body choreographies, In P. Debnath, H. M. Srivastava, K. Chakraborty, P. Kumam (Eds.), Advances in Number Theory and Applied Analysis, World Scientific, Singapore, 2023, pp. 195-230. https://doi.org/10.1142/13314
  • [8] M. Fernandez-Guasti, Analytic four-body limac¸on choreography, Celestial Mech. Dynam. Astronom., 137(4) (2025), 1-12. https://doi.org/10.1007/s10569-024-10235-x
  • [9] M. Fernandez-Guasti, Trifolium rose analytic four-body choreography, J. Appl. Math., 2025. Under review.
  • [10] T. Fujiwara, H. Fukuda, H. Ozaki, N-body choreography on the lemniscate, Developments and Applications of Dynamical Systems Theory, 1369 (2004), 163-177.
  • [11] A. Chenciner, J. Gerver, R. Montgomery, C. Sim´o, Simple Choreographic Motions of N Bodies: A Preliminary Study, In P. Newton, P. Holmes, A. Weinstein (Eds.), Geometry, Mechanics, and Dynamics, Springer-Verlag, NY, 2002. https://link.springer.com/chapter/10.1007/0-387-21791-6 9
  • [12] G. Yu, Simple choreographies of the planar Newtonian N-Body problem, Arch. Ration. Mech. Anal., 225 (2017), 901-935. https://doi.org/10.1007/s00205-017-1116-1
There are 12 citations in total.

Details

Primary Language English
Subjects Partial Differential Equations, Applied Mathematics (Other)
Journal Section Research Article
Authors

Manuel Fernandez-guasti 0000-0002-1839-6002

Project Number CONAHCyT CF-2023-I-1864
Early Pub Date November 27, 2025
Publication Date December 11, 2025
Submission Date June 23, 2025
Acceptance Date November 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Fernandez-guasti, M. (2025). Analytic Five-Body Gerono Lemniscata Choreography. Journal of Mathematical Sciences and Modelling, 8(4), 195-200. https://doi.org/10.33187/jmsm.1725741
AMA Fernandez-guasti M. Analytic Five-Body Gerono Lemniscata Choreography. Journal of Mathematical Sciences and Modelling. November 2025;8(4):195-200. doi:10.33187/jmsm.1725741
Chicago Fernandez-guasti, Manuel. “Analytic Five-Body Gerono Lemniscata Choreography”. Journal of Mathematical Sciences and Modelling 8, no. 4 (November 2025): 195-200. https://doi.org/10.33187/jmsm.1725741.
EndNote Fernandez-guasti M (November 1, 2025) Analytic Five-Body Gerono Lemniscata Choreography. Journal of Mathematical Sciences and Modelling 8 4 195–200.
IEEE M. Fernandez-guasti, “Analytic Five-Body Gerono Lemniscata Choreography”, Journal of Mathematical Sciences and Modelling, vol. 8, no. 4, pp. 195–200, 2025, doi: 10.33187/jmsm.1725741.
ISNAD Fernandez-guasti, Manuel. “Analytic Five-Body Gerono Lemniscata Choreography”. Journal of Mathematical Sciences and Modelling 8/4 (November2025), 195-200. https://doi.org/10.33187/jmsm.1725741.
JAMA Fernandez-guasti M. Analytic Five-Body Gerono Lemniscata Choreography. Journal of Mathematical Sciences and Modelling. 2025;8:195–200.
MLA Fernandez-guasti, Manuel. “Analytic Five-Body Gerono Lemniscata Choreography”. Journal of Mathematical Sciences and Modelling, vol. 8, no. 4, 2025, pp. 195-00, doi:10.33187/jmsm.1725741.
Vancouver Fernandez-guasti M. Analytic Five-Body Gerono Lemniscata Choreography. Journal of Mathematical Sciences and Modelling. 2025;8(4):195-200.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.