Research Article
BibTex RIS Cite

Pursuit-Evasion in Minimal Time with Varying Observation Constraints

Year 2025, Volume: 8 Issue: 4, 167 - 174
https://doi.org/10.33187/jmsm.1742985

Abstract

Optimal control problems under incomplete information, particularly in pursuit-evasion scenarios, present significant mathematical challenges. This study extends a basic time-optimal pursuit-evasion game by introducing a time-dependent observer parameter, $\lambda(t)$, which enhances the model's realism without altering the fundamental control strategy. We derive an optimal control law for the pursuer, based on current observations, and explicitly calculate the minimum capture time for a piecewise constant $\lambda(t)$. This work provides an analytical framework for managing uncertainty in dynamic environments, with direct applications in robotics, autonomous navigation, and search-and-rescue operations.

References

  • [1] R. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, Dover Publications, Mineola, 1999.
  • [2] L. S. Pontryagin, V. G. Boltyanskii, R. S. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers, New York, 1962.
  • [3] N. N. Krasovskii, A. I. Subbotin, Game-Theoretical Control Problems, Springer, New York, 1988.
  • [4] A. Friedman, Differential Games, Wiley-Interscience, New York, 1971.
  • [5] B. N. Pshenichnyi, V. V. Ostapenko, Differential Games, Naukova Dumka, Kiev, 1992.
  • [6] V. M. Kuntsevich, B. N. Pshenichnyi, Solution of a class of pursuit and evasion problems under uncertainty, Cybernet. Systems Anal., 31 (1995), 365–372. https://doi.org/10.1007/BF02366515
  • [7] B. N. Pshenichnyi, Special pursuit-and-evasion problem with incomplete information, Cybernet. Systems Anal., 31 (1995), 246–251. https://doi.org/10.1007/BF02366924
  • [8] H. Huang, W. Zhang, J. Ding, D. M. Stipanovi´c, C. J. Tomlin, Guaranteed decentralized pursuit-evasion in the plane with multiple pursuers, Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, (2011), 4835–4840. https://doi.org/10.1109/CDC.2011.6161237
  • [9] E. Garcia, D. W. Casbeer, A. Von Moll, M. Pachter, Multiple pursuer multiple evader differential games, IEEE Trans. Automat. Control, 66(5) (2021), 2345–2350. https://doi.org/10.1109/tac.2020.3003840
  • [10] A. B. Kurzhanski, Problem of collision avoidance for a team motion with obstacles, Proc. Steklov Inst. Math., 293(1) (2016), 120–136. https://doi.org/10.1134/S0081543816050114
  • [11] B. T. Samatov, The pursuit-evasion problem under integral-geometric constraints on pursuer controls, Autom. Remote Control, 74 (2013), 1072–1081. https://doi.org/10.1134/S0005117913070023
  • [12] B. S. Mordukhovich, T. I. Seidman, Feedback control of constrained parabolic systems in uncertainty conditions via asymmetric games, In: Applied Analysis and Differential Equations, 2007, 237–254. https://doi.org/10.1142/9789812708229 0020
  • [13] K. Shchelchkov, Discrete control of nonlinear system with uncertain information under disturbance conditions. Vestn. Udmurt. Univ. Mat. Mekh. Komp’yut. Nauki, 35(1) (2025), 155–166. https://doi.org/10.35634/vm250110
There are 13 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Özkan Değer 0000-0001-8487-4036

Early Pub Date October 2, 2025
Publication Date December 13, 2025
Submission Date July 15, 2025
Acceptance Date September 15, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Değer, Ö. (2025). Pursuit-Evasion in Minimal Time with Varying Observation Constraints. Journal of Mathematical Sciences and Modelling, 8(4), 167-174. https://doi.org/10.33187/jmsm.1742985
AMA Değer Ö. Pursuit-Evasion in Minimal Time with Varying Observation Constraints. Journal of Mathematical Sciences and Modelling. October 2025;8(4):167-174. doi:10.33187/jmsm.1742985
Chicago Değer, Özkan. “Pursuit-Evasion in Minimal Time With Varying Observation Constraints”. Journal of Mathematical Sciences and Modelling 8, no. 4 (October 2025): 167-74. https://doi.org/10.33187/jmsm.1742985.
EndNote Değer Ö (October 1, 2025) Pursuit-Evasion in Minimal Time with Varying Observation Constraints. Journal of Mathematical Sciences and Modelling 8 4 167–174.
IEEE Ö. Değer, “Pursuit-Evasion in Minimal Time with Varying Observation Constraints”, Journal of Mathematical Sciences and Modelling, vol. 8, no. 4, pp. 167–174, 2025, doi: 10.33187/jmsm.1742985.
ISNAD Değer, Özkan. “Pursuit-Evasion in Minimal Time With Varying Observation Constraints”. Journal of Mathematical Sciences and Modelling 8/4 (October2025), 167-174. https://doi.org/10.33187/jmsm.1742985.
JAMA Değer Ö. Pursuit-Evasion in Minimal Time with Varying Observation Constraints. Journal of Mathematical Sciences and Modelling. 2025;8:167–174.
MLA Değer, Özkan. “Pursuit-Evasion in Minimal Time With Varying Observation Constraints”. Journal of Mathematical Sciences and Modelling, vol. 8, no. 4, 2025, pp. 167-74, doi:10.33187/jmsm.1742985.
Vancouver Değer Ö. Pursuit-Evasion in Minimal Time with Varying Observation Constraints. Journal of Mathematical Sciences and Modelling. 2025;8(4):167-74.

29237    Journal of Mathematical Sciences and Modelling 29238

                  29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.