Research Article
BibTex RIS Cite
Year 2021, , 34 - 45, 31.12.2021
https://doi.org/10.54187/jnrs.979984

Abstract

References

  • L. A. Zadeh, Fuzzy sets, Information and control, 8(3), (1965) 338–353.
  • K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), (1986) 87–96.
  • A. K. Katsaras, Fuzzy topological vector spaces i, Fuzzy sets and systems, 6(1), (1981) 85–95.
  • A. K. Katsaras, Fuzzy topological vector spaces ii, Fuzzy sets and systems, 12(2), (1984) 143–154.
  • C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy sets and Systems, 48(2), (1992) 239–248.
  • S. C. Cheng, J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bulletin of the Calcutta Mathematical Society, 86, (1994) 429–436.
  • T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, Journal of Fuzzy Mathematics, 11(3), (2003) 687–706.
  • R. Saadati, S. Vaezpour, Some results on fuzzy banach spaces, Journal of Applied Mathematics and Computing, 17(1), (2005) 475–484.
  • I. Gole¸t, On generalized fuzzy normed spaces and coincidence point theorems, Fuzzy sets and Systems, 161(8), (2010) 1138–1144.
  • B. Dinda, T. K. Samanta, Intuitionistic fuzzy continuity and uniform convergence, International Journal of Open Problems in Computer Science and Mathematics, 3(1), (2010) 8–26.
  • R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons & Fractals, 27(2), (2006) 331–344.
  • I. Sadeqi, F. S. Kia, Fuzzy normed linear space and its topological structure, Chaos, Solitons & Fractals, 40(5), (2009) 2576–2589.
  • B. Dinda, T. K. Samanta, I. H. Jebril, Fuzzy anti-norm and fuzzy α-anti-convergence, Demonstratio Mathematica, 45(4), (2012) 739–754.
  • A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy menger normed algebras, Fuzzy sets and systems, 195, (2012) 109–117.
  • T. Bınzar, F. Pater, S. Nadaban, On fuzzy normed algebras, Journal of Nonlinear Sciences and Applications, 9(9), (2016) 5488–5496.
  • N. Konwar, P. Debnath, Intuitionistic fuzzy n-normed algebra and continuous product, Proyecciones (Antofagasta), 37(1), (2018) 68–83.
  • J. R. Kider, A. H. Ali, Properties of a complete fuzzy normed algebra, Baghdad Science Journal, 16(2), (2019) 382–388.
  • S. Nǎdǎban, Fuzzy pseudo-norms and fuzzy f-spaces, Fuzzy Sets and Systems, 282, (2016) 99–114.
  • T. Bag, S. K. Samanta, Fuzzy bounded linear operators, Fuzzy sets and Systems, 151(3), (2005) pp. 513–547.
  • B. Dinda, S. K. Ghosh, T. K. Samanta, Intuitionistic fuzzy pseudo-normed linear spaces, New Mathematics and Natural Computation, 15(1), (2019) 113–127.
  • B.Dinda, S. K.Ghosh, T. K. Samanta, On w-convergence and s-convergence in intuitionistic fuzzy pseudo normed spaces, New Mathematics and Natural Computation, 17(3), (2021) 623–632.
  • B. Dinda, S. K. Ghosh, T. K. Samanta, Relations on continuities and boundedness in intuitionistic fuzzy pseudo normed linear spaces, arXiv preprint, arXiv:2102.06519, 2021.
  • B. Dinda, S. K. Ghosh, T. K. Samanta, An introduction to spectral theory of bounded linear operators in intuitionistic fuzzy pseudo normed linear space, Sahand Communications in Mathematical Analysis, (2021) 12 pages (accepted), doi:10.22130/SCMA.2021.531698.942.
  • B. Schweizer, A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics, 10(1), (1960) 313 – 334.
  • M. M. Gupta, J. Qi, Theory of t-norms and fuzzy inference methods, Fuzzy sets and systems, 40(3), (1991) 431–450.

Properties of invertible elements in complete intuitionistic fuzzy pseudo normed algebra

Year 2021, , 34 - 45, 31.12.2021
https://doi.org/10.54187/jnrs.979984

Abstract

In this paper, we deal with the invertible elements in a complete intuitionistic fuzzy pseudo normed algebra (in short, IFPNA) with respect to Archimedean t-norm and Archimedean t-conorm. It is done by studying the continuity of algebraic operations in a complete IFPNA and investigating the condition for existence of inverse of an element in a complete IFPNA. Also some properties of invertible elements are studied. It is observed that the set of invertible elements in a complete IFPNA is an open set.

References

  • L. A. Zadeh, Fuzzy sets, Information and control, 8(3), (1965) 338–353.
  • K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), (1986) 87–96.
  • A. K. Katsaras, Fuzzy topological vector spaces i, Fuzzy sets and systems, 6(1), (1981) 85–95.
  • A. K. Katsaras, Fuzzy topological vector spaces ii, Fuzzy sets and systems, 12(2), (1984) 143–154.
  • C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy sets and Systems, 48(2), (1992) 239–248.
  • S. C. Cheng, J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bulletin of the Calcutta Mathematical Society, 86, (1994) 429–436.
  • T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, Journal of Fuzzy Mathematics, 11(3), (2003) 687–706.
  • R. Saadati, S. Vaezpour, Some results on fuzzy banach spaces, Journal of Applied Mathematics and Computing, 17(1), (2005) 475–484.
  • I. Gole¸t, On generalized fuzzy normed spaces and coincidence point theorems, Fuzzy sets and Systems, 161(8), (2010) 1138–1144.
  • B. Dinda, T. K. Samanta, Intuitionistic fuzzy continuity and uniform convergence, International Journal of Open Problems in Computer Science and Mathematics, 3(1), (2010) 8–26.
  • R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons & Fractals, 27(2), (2006) 331–344.
  • I. Sadeqi, F. S. Kia, Fuzzy normed linear space and its topological structure, Chaos, Solitons & Fractals, 40(5), (2009) 2576–2589.
  • B. Dinda, T. K. Samanta, I. H. Jebril, Fuzzy anti-norm and fuzzy α-anti-convergence, Demonstratio Mathematica, 45(4), (2012) 739–754.
  • A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy menger normed algebras, Fuzzy sets and systems, 195, (2012) 109–117.
  • T. Bınzar, F. Pater, S. Nadaban, On fuzzy normed algebras, Journal of Nonlinear Sciences and Applications, 9(9), (2016) 5488–5496.
  • N. Konwar, P. Debnath, Intuitionistic fuzzy n-normed algebra and continuous product, Proyecciones (Antofagasta), 37(1), (2018) 68–83.
  • J. R. Kider, A. H. Ali, Properties of a complete fuzzy normed algebra, Baghdad Science Journal, 16(2), (2019) 382–388.
  • S. Nǎdǎban, Fuzzy pseudo-norms and fuzzy f-spaces, Fuzzy Sets and Systems, 282, (2016) 99–114.
  • T. Bag, S. K. Samanta, Fuzzy bounded linear operators, Fuzzy sets and Systems, 151(3), (2005) pp. 513–547.
  • B. Dinda, S. K. Ghosh, T. K. Samanta, Intuitionistic fuzzy pseudo-normed linear spaces, New Mathematics and Natural Computation, 15(1), (2019) 113–127.
  • B.Dinda, S. K.Ghosh, T. K. Samanta, On w-convergence and s-convergence in intuitionistic fuzzy pseudo normed spaces, New Mathematics and Natural Computation, 17(3), (2021) 623–632.
  • B. Dinda, S. K. Ghosh, T. K. Samanta, Relations on continuities and boundedness in intuitionistic fuzzy pseudo normed linear spaces, arXiv preprint, arXiv:2102.06519, 2021.
  • B. Dinda, S. K. Ghosh, T. K. Samanta, An introduction to spectral theory of bounded linear operators in intuitionistic fuzzy pseudo normed linear space, Sahand Communications in Mathematical Analysis, (2021) 12 pages (accepted), doi:10.22130/SCMA.2021.531698.942.
  • B. Schweizer, A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics, 10(1), (1960) 313 – 334.
  • M. M. Gupta, J. Qi, Theory of t-norms and fuzzy inference methods, Fuzzy sets and systems, 40(3), (1991) 431–450.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Bivas Dinda 0000-0002-9761-4820

Santanu Kumar Ghosh 0000-0001-8707-6814

Tapas Samanta 0000-0001-8728-0356

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Dinda, B., Ghosh, S. K., & Samanta, T. (2021). Properties of invertible elements in complete intuitionistic fuzzy pseudo normed algebra. Journal of New Results in Science, 10(3), 34-45. https://doi.org/10.54187/jnrs.979984
AMA Dinda B, Ghosh SK, Samanta T. Properties of invertible elements in complete intuitionistic fuzzy pseudo normed algebra. JNRS. December 2021;10(3):34-45. doi:10.54187/jnrs.979984
Chicago Dinda, Bivas, Santanu Kumar Ghosh, and Tapas Samanta. “Properties of Invertible Elements in Complete Intuitionistic Fuzzy Pseudo Normed Algebra”. Journal of New Results in Science 10, no. 3 (December 2021): 34-45. https://doi.org/10.54187/jnrs.979984.
EndNote Dinda B, Ghosh SK, Samanta T (December 1, 2021) Properties of invertible elements in complete intuitionistic fuzzy pseudo normed algebra. Journal of New Results in Science 10 3 34–45.
IEEE B. Dinda, S. K. Ghosh, and T. Samanta, “Properties of invertible elements in complete intuitionistic fuzzy pseudo normed algebra”, JNRS, vol. 10, no. 3, pp. 34–45, 2021, doi: 10.54187/jnrs.979984.
ISNAD Dinda, Bivas et al. “Properties of Invertible Elements in Complete Intuitionistic Fuzzy Pseudo Normed Algebra”. Journal of New Results in Science 10/3 (December 2021), 34-45. https://doi.org/10.54187/jnrs.979984.
JAMA Dinda B, Ghosh SK, Samanta T. Properties of invertible elements in complete intuitionistic fuzzy pseudo normed algebra. JNRS. 2021;10:34–45.
MLA Dinda, Bivas et al. “Properties of Invertible Elements in Complete Intuitionistic Fuzzy Pseudo Normed Algebra”. Journal of New Results in Science, vol. 10, no. 3, 2021, pp. 34-45, doi:10.54187/jnrs.979984.
Vancouver Dinda B, Ghosh SK, Samanta T. Properties of invertible elements in complete intuitionistic fuzzy pseudo normed algebra. JNRS. 2021;10(3):34-45.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).