BibTex RIS Cite

Estimation of Delay Profiles from FMCW Channel Data with In-band Interference Using Eigenvector Method

Year 2016, Volume: 5 , 198 - 204, 07.11.2016

Abstract

The aim of this study is to reduce the effect of in-band interference in delay profiles estimated from frequency modulated continuous wave sounder channel data. In-band interference distorts the detector output signal, and increases the noise floor of delay profiles, which obscures weak multipath components. This study shows that the Eigenvector method can be used to improve estimates of delay profiles from FMCW channel data corrupted with in-band interference.

References

  • S. Salous, Measurement of multipath delay statistics over 72-90 MHz bandwith at 1.8GHz in two European cities using a Chirp sounder, Radio Science, 34(4) (1999) 797-816.
  • M. Goppelt, H. -L. Blocher, W. Menzel, Automotive radar – investigation of mutual interference mechanisms, Advances in Radio Science, 8 (2010) 55-60.
  • G. M. Brooker, Mutual interference of millimeter-wave radar systems, IEEE Transactions on Electromagnetic Compatibility, 49(1) (2007) 170-181.
  • S. Salous, H. Gokalp, Medium- and large- scale characterization of UMTS-allocates frequency division duplex channels, IEEE Transactions on Vehicular Technology, 56(5) (2007) 2831-2843.
  • E. D. R. Shearman, R. R. Unsal, Compatibility of high frequency radar remote sensing with communication, International Conference on Radio Spectrum Conservation Techniques, London, 1980.
  • J. H. Choi, H. B. Lee, J. W. Choi, S. C. Kim, Mutual interference suppression using clipping and weighted-envelope normalization for automotive FMCW radar systems, IEICE Transactions on Communications, E99.B(1) (2016) 280-287.
  • T. Schipper, M. Harter, L. Zwirello, T. Mahler, T. Zwick, Systematic approach to investigate and counteract interference-effects in automotive radars, 9th European Radar Conference (EuRAD), Amsterdam, 2012.
  • H. Gokalp, G. Y. Taflan, S. Salous, In-band interference reduction in FMCW channel data using Prony modelling, IET Electronics Letters, 45(2) (2009) 132-133.
  • W. Wang, L. R. Wyatt, Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar, IET Radar, Sonar and Navigation, 5(4) (2011) 405-415.
  • M. F. Al-Azzo, K. I. Al-Sabaawi, High resolution techniques for direction of arrival estimation of ultrasonic waves, American Journal of Signal Processing, 4(2) (2014) 49-59.
  • E. D. Übeyli, İ. Güler, Features extracted by eigenvector methods for detecting variability of EEG signals, Pattern Recognition Letters, 28 (2007) 592–603.
  • H. Gokalp, G. Y. Taflan, S. Ustun, Min-norm method for estimating delay and doppler profiles from FMCW channel data with in-band interference, IET Electronics Letters, 40(11) (2010) 799-800.
  • D. H. Johnson, S. R. DeGraaf, Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis, IEEE Transactions on Acoustics, Speech and Signal Processing, 30(4) (1982) 638-647.
  • M. H. Hayes, Statistical digital signal processing and modelling, John Wiley&Sons, Inc., 1996.
Year 2016, Volume: 5 , 198 - 204, 07.11.2016

Abstract

References

  • S. Salous, Measurement of multipath delay statistics over 72-90 MHz bandwith at 1.8GHz in two European cities using a Chirp sounder, Radio Science, 34(4) (1999) 797-816.
  • M. Goppelt, H. -L. Blocher, W. Menzel, Automotive radar – investigation of mutual interference mechanisms, Advances in Radio Science, 8 (2010) 55-60.
  • G. M. Brooker, Mutual interference of millimeter-wave radar systems, IEEE Transactions on Electromagnetic Compatibility, 49(1) (2007) 170-181.
  • S. Salous, H. Gokalp, Medium- and large- scale characterization of UMTS-allocates frequency division duplex channels, IEEE Transactions on Vehicular Technology, 56(5) (2007) 2831-2843.
  • E. D. R. Shearman, R. R. Unsal, Compatibility of high frequency radar remote sensing with communication, International Conference on Radio Spectrum Conservation Techniques, London, 1980.
  • J. H. Choi, H. B. Lee, J. W. Choi, S. C. Kim, Mutual interference suppression using clipping and weighted-envelope normalization for automotive FMCW radar systems, IEICE Transactions on Communications, E99.B(1) (2016) 280-287.
  • T. Schipper, M. Harter, L. Zwirello, T. Mahler, T. Zwick, Systematic approach to investigate and counteract interference-effects in automotive radars, 9th European Radar Conference (EuRAD), Amsterdam, 2012.
  • H. Gokalp, G. Y. Taflan, S. Salous, In-band interference reduction in FMCW channel data using Prony modelling, IET Electronics Letters, 45(2) (2009) 132-133.
  • W. Wang, L. R. Wyatt, Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar, IET Radar, Sonar and Navigation, 5(4) (2011) 405-415.
  • M. F. Al-Azzo, K. I. Al-Sabaawi, High resolution techniques for direction of arrival estimation of ultrasonic waves, American Journal of Signal Processing, 4(2) (2014) 49-59.
  • E. D. Übeyli, İ. Güler, Features extracted by eigenvector methods for detecting variability of EEG signals, Pattern Recognition Letters, 28 (2007) 592–603.
  • H. Gokalp, G. Y. Taflan, S. Ustun, Min-norm method for estimating delay and doppler profiles from FMCW channel data with in-band interference, IET Electronics Letters, 40(11) (2010) 799-800.
  • D. H. Johnson, S. R. DeGraaf, Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis, IEEE Transactions on Acoustics, Speech and Signal Processing, 30(4) (1982) 638-647.
  • M. H. Hayes, Statistical digital signal processing and modelling, John Wiley&Sons, Inc., 1996.
There are 14 citations in total.

Details

Journal Section Articles
Authors

Gaye Yesim Taflan This is me

Hulya Gokalp This is me

Publication Date November 7, 2016
Published in Issue Year 2016 Volume: 5

Cite

APA Taflan, G. Y., & Gokalp, H. (2016). Estimation of Delay Profiles from FMCW Channel Data with In-band Interference Using Eigenvector Method. Journal of New Results in Science, 5, 198-204.
AMA Taflan GY, Gokalp H. Estimation of Delay Profiles from FMCW Channel Data with In-band Interference Using Eigenvector Method. JNRS. November 2016;5:198-204.
Chicago Taflan, Gaye Yesim, and Hulya Gokalp. “Estimation of Delay Profiles from FMCW Channel Data With In-Band Interference Using Eigenvector Method”. Journal of New Results in Science 5, November (November 2016): 198-204.
EndNote Taflan GY, Gokalp H (November 1, 2016) Estimation of Delay Profiles from FMCW Channel Data with In-band Interference Using Eigenvector Method. Journal of New Results in Science 5 198–204.
IEEE G. Y. Taflan and H. Gokalp, “Estimation of Delay Profiles from FMCW Channel Data with In-band Interference Using Eigenvector Method”, JNRS, vol. 5, pp. 198–204, 2016.
ISNAD Taflan, Gaye Yesim - Gokalp, Hulya. “Estimation of Delay Profiles from FMCW Channel Data With In-Band Interference Using Eigenvector Method”. Journal of New Results in Science 5 (November 2016), 198-204.
JAMA Taflan GY, Gokalp H. Estimation of Delay Profiles from FMCW Channel Data with In-band Interference Using Eigenvector Method. JNRS. 2016;5:198–204.
MLA Taflan, Gaye Yesim and Hulya Gokalp. “Estimation of Delay Profiles from FMCW Channel Data With In-Band Interference Using Eigenvector Method”. Journal of New Results in Science, vol. 5, 2016, pp. 198-04.
Vancouver Taflan GY, Gokalp H. Estimation of Delay Profiles from FMCW Channel Data with In-band Interference Using Eigenvector Method. JNRS. 2016;5:198-204.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).