BibTex RIS Cite

Mildly Ig-Closed Sets

Year 2014, Volume: 3 Issue: 5, 37 - 47, 01.05.2014

Abstract

called mildly Ig-open sets in ideal topological spaces is introducedand the notion of mildly Ig-closed sets in ideal topological spacesis studied. The relationships of mildly Ig-closed sets and variousproperties of mildly Ig-closed sets are investigated

References

  • A. Acikgoz and S. Yuksel, Some new sets and decompositions of AI−R-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79
  • J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
  • E. Ekici, On ACI-sets, BCI-sets, β∗-open sets and decompositions of continuity in I-open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
  • E. Ekici and S. Ozen, A generalized class of τ * in ideal spaces, Filomat, 27(4)(2013), 529-5
  • S. Guler and A. C. Guler, On Iπgs∗-closed sets in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 3(4)(2011), 120-127.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • N. Levine, Generalized closed sets in topology, Rend. Cir. Math. Palermo, 19(1970), 55
  • Z. Li, Some results on g-regular and g-normal spaces, Scientia, Series A : Mathe- matical Sciences, 23(2012), 67-73.
  • H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
  • B. M. Munshi, Seperation axioms, Acta Ciencia Indica, 12(1986), 140-144.
  • M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
  • M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, Ig-normal and Ig- regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
  • J. K. Park and J. H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitons and Fractals, 20(2004), 1103-1111.
  • P. Sundaram and N. Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-1012.
  • P. Sundaram and A. Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
  • R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
Year 2014, Volume: 3 Issue: 5, 37 - 47, 01.05.2014

Abstract

References

  • A. Acikgoz and S. Yuksel, Some new sets and decompositions of AI−R-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79
  • J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
  • E. Ekici, On ACI-sets, BCI-sets, β∗-open sets and decompositions of continuity in I-open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
  • E. Ekici and S. Ozen, A generalized class of τ * in ideal spaces, Filomat, 27(4)(2013), 529-5
  • S. Guler and A. C. Guler, On Iπgs∗-closed sets in ideal topological spaces, Journal of Advanced Research in Pure Mathematics, 3(4)(2011), 120-127.
  • D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
  • K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
  • N. Levine, Generalized closed sets in topology, Rend. Cir. Math. Palermo, 19(1970), 55
  • Z. Li, Some results on g-regular and g-normal spaces, Scientia, Series A : Mathe- matical Sciences, 23(2012), 67-73.
  • H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
  • B. M. Munshi, Seperation axioms, Acta Ciencia Indica, 12(1986), 140-144.
  • M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
  • M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, Ig-normal and Ig- regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
  • J. K. Park and J. H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitons and Fractals, 20(2004), 1103-1111.
  • P. Sundaram and N. Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-1012.
  • P. Sundaram and A. Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., 3(4)(2001), 563-575.
  • R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
There are 17 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

O. Ravi This is me

R.Senthil Kumarb This is me

Publication Date May 1, 2014
Published in Issue Year 2014 Volume: 3 Issue: 5

Cite

APA Ravi, O., & Kumarb, R. (2014). Mildly Ig-Closed Sets. Journal of New Results in Science, 3(5), 37-47.
AMA Ravi O, Kumarb R. Mildly Ig-Closed Sets. JNRS. May 2014;3(5):37-47.
Chicago Ravi, O., and R.Senthil Kumarb. “Mildly Ig-Closed Sets”. Journal of New Results in Science 3, no. 5 (May 2014): 37-47.
EndNote Ravi O, Kumarb R (May 1, 2014) Mildly Ig-Closed Sets. Journal of New Results in Science 3 5 37–47.
IEEE O. Ravi and R. Kumarb, “Mildly Ig-Closed Sets”, JNRS, vol. 3, no. 5, pp. 37–47, 2014.
ISNAD Ravi, O. - Kumarb, R.Senthil. “Mildly Ig-Closed Sets”. Journal of New Results in Science 3/5 (May 2014), 37-47.
JAMA Ravi O, Kumarb R. Mildly Ig-Closed Sets. JNRS. 2014;3:37–47.
MLA Ravi, O. and R.Senthil Kumarb. “Mildly Ig-Closed Sets”. Journal of New Results in Science, vol. 3, no. 5, 2014, pp. 37-47.
Vancouver Ravi O, Kumarb R. Mildly Ig-Closed Sets. JNRS. 2014;3(5):37-4.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).