BibTex RIS Cite

Soft Closed Sets on Soft Bitopological Space

Year 2014, Volume: 3 Issue: 5, 57 - 66, 01.05.2014

Abstract

Soft set theory was introduced by Molodtsov as ageneral mathematical tool for dealing with problems that containuncertainity. In this paper, on soft bitopological space, we definesoft closed sets; soft α-closed, soft semi-closed, soft pre-closed,regular soft closed, soft g-closed and soft sg-closed. We also giverelated properties of these soft sets and compared their propertieswith each other

References

  • Adnadjevi´c, D.: Ordered spaces and bitopology. Glasnik Mat. Ser. III. 10(30), 337-340 (1975).
  • Ayg¨uno˘glu, A., Ayg¨un, H.: Some notes on soft topological spaces. Neu. Comp. and App. 1-7 (2011).
  • Ayg¨uno˘glu, A., Ayg¨un, H.: Soft sets and soft topological spaces. preprint. Banaschewski, B., Brummer, G.C.L: Stably continuous frames, Math. Proc. Cam- bridge Philos. Soc. 104, 7-19 (1988).
  • Br¨ummer, G.C.L.: Two procedures in bitopology. Categorical Topology (Proc. Internat. Conf., Free Univ. Berlin), 35-43 (1978).
  • C¸ a˘gman, N., Engino˘glu, S.: Soft set theory and uni-int decision making, European Journal of Operational Research 10.16/ j.ejor.2010.05.004, 2010.
  • C¸ a˘gman, N., Karata¸s, S., Engino˘glu, S.: Soft Topology. Comp. and Math. with App. 62 (1), 351-358 (2011).
  • Datta, M.C.: Projective bitopological spaces I. J. Austral. Math. Soc. 13, 327-334 (1972).
  • Datta, M.C.: Projective bitopological spaces II. J. Austral. Math. Soc. 14, 119-128 (1972).
  • Dvalishvili, B. P.: Bitoplogical Spaces; Theory, Relations with Generalized Alge- braic Structures and Applications. North-Holland Math. Studies 199 (2005).
  • Ivanov A. A.: Problems of the Theory of Bitoplogical Spaces (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988). Issled.
  • Topol. 6, 5-62, 190. English Transl. J. Soviet Math. 52, No:1, 2759-2790 (1990).
  • Jafari, S., Thivagar, M.L., Ponmani, S.A: (1, 2)α-open sets based on bitopological seperation axioms. Sooch. J. Math. 33(3), 375-381 (2007).
  • Kannan, K.: Soft generalized closed sets in soft topological spaces. J. Theo. and App. Inf. Tech., 37(1), 17-21 (2012).
  • Kelly, J. C.: Bitopological Spaces. Proc. London Math. Soc. 13 (3), 71-89 (1963).
  • Majumdar, P. ve Samanta, S. K.: On soft mappings. Comp. and Math. with App. 60, 2666-2672 (2010).
  • Min, W. K.: A Note on Soft Topological Spaces. Comp. and Math. with App. 62, 3524-3528 (2011).
  • Molodtsov, D.A.: Soft set theory-first results. Comp. and Math. with App. 37, 19-31 (1999).
  • Patty C. W.: Bitopological Spaces. Duke Math. J. 34, 387-392 (1967).
  • Peyghan, E., Samadi, B., Tayebi, A.: On soft connectedness. arXiv: 1202.1668v1 (2012).
  • Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24 (3), 507-530 (1972).
  • Ravi, O., Thivagar, M.L.,: On stronger forms of (1, 2)∗quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra. 14(6), 481-492 (2004).
  • Ravi, O., Thivagar, M.L.: A bitopological (1, 2)∗Semi-generalized Continuous Maps. Bull. Malays. Math. Sci. Soc(2) 29(1), 79-88 (2006).
  • Ravi, O., Thivagar, M.L.: Remarks on extensions (1, 2)∗g-closed mappings in bitopological spaces. preprint. Rong, W.: The countabilities of soft topological spaces. Internat. J. Comp. and Math. Sci. 6, 159-162 (2012).
  • Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems. J. Comp. Appl. Math. 203, 412-418 (2007).
  • Shabir, M., and Naz, M.: On Soft Topological Spaces. Comput. Math. Appl., 61, 1786-1799 (2011).
  • Smithson, R.E.: Multifunctions and bitopological spaces. J. Natural Sci. and Math. 11, 191-198 (1971).
  • S¸enel, G., C¸ a˘gman, N.: Soft bitopological spaces. submitted. Thivagar, M.L., RajaRajeswari, R.: On bitopological ultra spaces. South. Asian Bull. Math. 31, 993-1008 (2007).
  • Zorlutuna, I., and Akda˘g, M., Min, W.K., Atmaca, S.: Remarks on Soft Topolog- ical Spaces. Annals of Fuzzy Math. and Inf. 3 (2), 171-185 (2011).
Year 2014, Volume: 3 Issue: 5, 57 - 66, 01.05.2014

Abstract

References

  • Adnadjevi´c, D.: Ordered spaces and bitopology. Glasnik Mat. Ser. III. 10(30), 337-340 (1975).
  • Ayg¨uno˘glu, A., Ayg¨un, H.: Some notes on soft topological spaces. Neu. Comp. and App. 1-7 (2011).
  • Ayg¨uno˘glu, A., Ayg¨un, H.: Soft sets and soft topological spaces. preprint. Banaschewski, B., Brummer, G.C.L: Stably continuous frames, Math. Proc. Cam- bridge Philos. Soc. 104, 7-19 (1988).
  • Br¨ummer, G.C.L.: Two procedures in bitopology. Categorical Topology (Proc. Internat. Conf., Free Univ. Berlin), 35-43 (1978).
  • C¸ a˘gman, N., Engino˘glu, S.: Soft set theory and uni-int decision making, European Journal of Operational Research 10.16/ j.ejor.2010.05.004, 2010.
  • C¸ a˘gman, N., Karata¸s, S., Engino˘glu, S.: Soft Topology. Comp. and Math. with App. 62 (1), 351-358 (2011).
  • Datta, M.C.: Projective bitopological spaces I. J. Austral. Math. Soc. 13, 327-334 (1972).
  • Datta, M.C.: Projective bitopological spaces II. J. Austral. Math. Soc. 14, 119-128 (1972).
  • Dvalishvili, B. P.: Bitoplogical Spaces; Theory, Relations with Generalized Alge- braic Structures and Applications. North-Holland Math. Studies 199 (2005).
  • Ivanov A. A.: Problems of the Theory of Bitoplogical Spaces (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988). Issled.
  • Topol. 6, 5-62, 190. English Transl. J. Soviet Math. 52, No:1, 2759-2790 (1990).
  • Jafari, S., Thivagar, M.L., Ponmani, S.A: (1, 2)α-open sets based on bitopological seperation axioms. Sooch. J. Math. 33(3), 375-381 (2007).
  • Kannan, K.: Soft generalized closed sets in soft topological spaces. J. Theo. and App. Inf. Tech., 37(1), 17-21 (2012).
  • Kelly, J. C.: Bitopological Spaces. Proc. London Math. Soc. 13 (3), 71-89 (1963).
  • Majumdar, P. ve Samanta, S. K.: On soft mappings. Comp. and Math. with App. 60, 2666-2672 (2010).
  • Min, W. K.: A Note on Soft Topological Spaces. Comp. and Math. with App. 62, 3524-3528 (2011).
  • Molodtsov, D.A.: Soft set theory-first results. Comp. and Math. with App. 37, 19-31 (1999).
  • Patty C. W.: Bitopological Spaces. Duke Math. J. 34, 387-392 (1967).
  • Peyghan, E., Samadi, B., Tayebi, A.: On soft connectedness. arXiv: 1202.1668v1 (2012).
  • Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc. 24 (3), 507-530 (1972).
  • Ravi, O., Thivagar, M.L.,: On stronger forms of (1, 2)∗quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra. 14(6), 481-492 (2004).
  • Ravi, O., Thivagar, M.L.: A bitopological (1, 2)∗Semi-generalized Continuous Maps. Bull. Malays. Math. Sci. Soc(2) 29(1), 79-88 (2006).
  • Ravi, O., Thivagar, M.L.: Remarks on extensions (1, 2)∗g-closed mappings in bitopological spaces. preprint. Rong, W.: The countabilities of soft topological spaces. Internat. J. Comp. and Math. Sci. 6, 159-162 (2012).
  • Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems. J. Comp. Appl. Math. 203, 412-418 (2007).
  • Shabir, M., and Naz, M.: On Soft Topological Spaces. Comput. Math. Appl., 61, 1786-1799 (2011).
  • Smithson, R.E.: Multifunctions and bitopological spaces. J. Natural Sci. and Math. 11, 191-198 (1971).
  • S¸enel, G., C¸ a˘gman, N.: Soft bitopological spaces. submitted. Thivagar, M.L., RajaRajeswari, R.: On bitopological ultra spaces. South. Asian Bull. Math. 31, 993-1008 (2007).
  • Zorlutuna, I., and Akda˘g, M., Min, W.K., Atmaca, S.: Remarks on Soft Topolog- ical Spaces. Annals of Fuzzy Math. and Inf. 3 (2), 171-185 (2011).
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Guzide Senel

Naim Cagman This is me

Publication Date May 1, 2014
Published in Issue Year 2014 Volume: 3 Issue: 5

Cite

APA Senel, G., & Cagman, N. (2014). Soft Closed Sets on Soft Bitopological Space. Journal of New Results in Science, 3(5), 57-66.
AMA Senel G, Cagman N. Soft Closed Sets on Soft Bitopological Space. JNRS. May 2014;3(5):57-66.
Chicago Senel, Guzide, and Naim Cagman. “Soft Closed Sets on Soft Bitopological Space”. Journal of New Results in Science 3, no. 5 (May 2014): 57-66.
EndNote Senel G, Cagman N (May 1, 2014) Soft Closed Sets on Soft Bitopological Space. Journal of New Results in Science 3 5 57–66.
IEEE G. Senel and N. Cagman, “Soft Closed Sets on Soft Bitopological Space”, JNRS, vol. 3, no. 5, pp. 57–66, 2014.
ISNAD Senel, Guzide - Cagman, Naim. “Soft Closed Sets on Soft Bitopological Space”. Journal of New Results in Science 3/5 (May 2014), 57-66.
JAMA Senel G, Cagman N. Soft Closed Sets on Soft Bitopological Space. JNRS. 2014;3:57–66.
MLA Senel, Guzide and Naim Cagman. “Soft Closed Sets on Soft Bitopological Space”. Journal of New Results in Science, vol. 3, no. 5, 2014, pp. 57-66.
Vancouver Senel G, Cagman N. Soft Closed Sets on Soft Bitopological Space. JNRS. 2014;3(5):57-66.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).