Research Article
BibTex RIS Cite
Year 2020, Volume: 9 Issue: 1, 44 - 52, 30.05.2020

Abstract

References

  • [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1983) 87 - 96.
  • [2] T.K. Dutta, S.K. Sardar, On matrix 􀀀-semirings, Far East J. Math.Sci.,Vol 7, No. 1 (2002), 17 - 31.
  • [3] Y. B. Jun and M. Khan, Hesitant fuzzy bi-ideals in semigroups, Commun.Korean Math. Soc. 30 (2015), No. 3, pp. 143 - 154
  • [4] Y. B. Jun and S. Z. Song, Hesitant fuzzy set theory applied to lters inMTL-algebras, Honam Math. J. 36 (2014), no. 4, 813 - 830.
  • [5] M.M.K.Rao, 􀀀-semirings-1, Southeast Asian Bull. of Math., 19(1995)49-54
  • [6] R. M. Rodriguez, Luis Martinez and Francisco Herrera, Hesitant fuzzy lin-guistic term sets for decision making, IEEE Trans. Fuzzy Syst. 20 (2012),no. 1, 109 - 119.
  • [7] A. Rosenfeld, "Fuzzy groups", J. Math. Anal. Appl. 35(1971) 512 - 517
  • [8] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529 - 539.
  • [9] V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The18th IEEE International Conference on Fuzzy Systems, pp. 1378 - 1382,Jeju Island, Korea, 2009.
  • [10] H.S. Vandiver, Note on a simple type of algebra in which cancellation lawof addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914 - 920.
  • [11] G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowledge-Based Systems 31 (2012), 176- 182.
  • [12] M. Xia and Z. S. Xu, Hesitant fuzzy information aggregation in decisionmaking, Internat. J. Approx. Reason. 52 (2011), no. 3, 395 - 407.
  • [13] M. Xia, Z. S. Xu, and N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group DecisionNegotiation 22 (2013), 259 - 279.
  • [14] Z. S. Xu and M. Xia, Distance and similarity measures for hesitant fuzzysets, Inform. Sci. 181 (2011), no. 11, 2128 - 2138.
  • [15] B. Zhu, Z. Xu, and M. Xia, Hesitant fuzzy geometric Bonferroni means,Inform. Sci. 205 (2012), 72 - 85.
  • [16] L.A.Zadeh, "Fuzzy Sets", Information and Control, 8(1965)338 - 353.

Hesitant intuitionistic fuzzy ideals of $\Gamma$-semirings

Year 2020, Volume: 9 Issue: 1, 44 - 52, 30.05.2020

Abstract

In this paper, we have defined
hesitant intuitionistic fuzzy ideals, hesitant 
intuitionistic fuzzy
bi-ideals and hesitant intuitionistic fuzzy quasi-ideals of a $\Gamma$-
semiring and obtain some of their related properties. We
have discussed 
some inter-relations
between these ideals. We also obtain some characteriza
tions of regular $\Gamma$-semiring.

References

  • [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1983) 87 - 96.
  • [2] T.K. Dutta, S.K. Sardar, On matrix 􀀀-semirings, Far East J. Math.Sci.,Vol 7, No. 1 (2002), 17 - 31.
  • [3] Y. B. Jun and M. Khan, Hesitant fuzzy bi-ideals in semigroups, Commun.Korean Math. Soc. 30 (2015), No. 3, pp. 143 - 154
  • [4] Y. B. Jun and S. Z. Song, Hesitant fuzzy set theory applied to lters inMTL-algebras, Honam Math. J. 36 (2014), no. 4, 813 - 830.
  • [5] M.M.K.Rao, 􀀀-semirings-1, Southeast Asian Bull. of Math., 19(1995)49-54
  • [6] R. M. Rodriguez, Luis Martinez and Francisco Herrera, Hesitant fuzzy lin-guistic term sets for decision making, IEEE Trans. Fuzzy Syst. 20 (2012),no. 1, 109 - 119.
  • [7] A. Rosenfeld, "Fuzzy groups", J. Math. Anal. Appl. 35(1971) 512 - 517
  • [8] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529 - 539.
  • [9] V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The18th IEEE International Conference on Fuzzy Systems, pp. 1378 - 1382,Jeju Island, Korea, 2009.
  • [10] H.S. Vandiver, Note on a simple type of algebra in which cancellation lawof addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914 - 920.
  • [11] G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowledge-Based Systems 31 (2012), 176- 182.
  • [12] M. Xia and Z. S. Xu, Hesitant fuzzy information aggregation in decisionmaking, Internat. J. Approx. Reason. 52 (2011), no. 3, 395 - 407.
  • [13] M. Xia, Z. S. Xu, and N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group DecisionNegotiation 22 (2013), 259 - 279.
  • [14] Z. S. Xu and M. Xia, Distance and similarity measures for hesitant fuzzysets, Inform. Sci. 181 (2011), no. 11, 2128 - 2138.
  • [15] B. Zhu, Z. Xu, and M. Xia, Hesitant fuzzy geometric Bonferroni means,Inform. Sci. 205 (2012), 72 - 85.
  • [16] L.A.Zadeh, "Fuzzy Sets", Information and Control, 8(1965)338 - 353.
There are 16 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Debabrata Mandal

Publication Date May 30, 2020
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Mandal, D. (2020). Hesitant intuitionistic fuzzy ideals of $\Gamma$-semirings. Journal of New Results in Science, 9(1), 44-52.
AMA Mandal D. Hesitant intuitionistic fuzzy ideals of $\Gamma$-semirings. JNRS. May 2020;9(1):44-52.
Chicago Mandal, Debabrata. “Hesitant Intuitionistic Fuzzy Ideals of $\Gamma$-Semirings”. Journal of New Results in Science 9, no. 1 (May 2020): 44-52.
EndNote Mandal D (May 1, 2020) Hesitant intuitionistic fuzzy ideals of $\Gamma$-semirings. Journal of New Results in Science 9 1 44–52.
IEEE D. Mandal, “Hesitant intuitionistic fuzzy ideals of $\Gamma$-semirings”, JNRS, vol. 9, no. 1, pp. 44–52, 2020.
ISNAD Mandal, Debabrata. “Hesitant Intuitionistic Fuzzy Ideals of $\Gamma$-Semirings”. Journal of New Results in Science 9/1 (May 2020), 44-52.
JAMA Mandal D. Hesitant intuitionistic fuzzy ideals of $\Gamma$-semirings. JNRS. 2020;9:44–52.
MLA Mandal, Debabrata. “Hesitant Intuitionistic Fuzzy Ideals of $\Gamma$-Semirings”. Journal of New Results in Science, vol. 9, no. 1, 2020, pp. 44-52.
Vancouver Mandal D. Hesitant intuitionistic fuzzy ideals of $\Gamma$-semirings. JNRS. 2020;9(1):44-52.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).