Research Article
BibTex RIS Cite
Year 2021, Volume: 10 Issue: 1, 38 - 45, 30.04.2021

Abstract

References

  • J. H. C. Whitehead, Combinatorial homotopy II, Bulletin of the American Mathematical Society, 55, (1949) 453-496.
  • M. Alp, Actor of crossed modules of algebroids, 16th International Conference of Jangjeon Mathematical Society, 16, (2005), 6-15.
  • K. Norrie, Actions and automorphisms of crossed modules, Bulletin de la Societe Mathematique de France, 118, (1990) 129-146.
  • D. Conduche and C. Rodriguez-Fernandez, Non-abelian tensor and exterior products module $q$ and universal $q$-center relative extension, Journal of Pure and Applied Algebra, 78(2), (1992) 139-160.
  • J. L. Doncel-Juurez, A. R.-Crondjeanl.-Valcarcel, $q$-perfect crossed modules, Journal of Pure and Applied Algebra, 81, (1992) 279-292.
  • M. Alp, C. D. Wenseley, Automorphisms and homotopies of groupoids and crossed modules, Applied Categorical Structures, 18, (2010) 473-504.
  • R. Brown, Higher-dimensional group theory. Low-dimensional topology (Bangor, 1979), pp. 215-238, London Mathematical Society Lecture Note Series, 48, Cambridge University Press, Cambridge-New York, 1982.
  • C. Houghton, On the automorphisms groups of certain wreath products, Publicationes Mathematicae Debrecen, 9, (1963) 307-313.
  • J. Panagopoulos, Groups of automorphisms of standard wreath products, Archiv der Mathematik, 37, (1981) 499-511.
  • P. M. Neumann, On the structure of standard wreath products of groups, Mathematische Zeitschrift, 84, (1964) 343-373.
  • J. Panagopoulos, A semicomplete standard wreath products, Archiv der Mathematik, 43, (1984) 301-302.
  • J. Panagopoulos, The groups of central automorphisms of the standard wreath products, Archiv der Mathematik, 45, (1985) 411-417.

n-complete crossed modules and wreath products of groups

Year 2021, Volume: 10 Issue: 1, 38 - 45, 30.04.2021

Abstract

In this paper we examine the $n$-completeness of a crossed module and we show that if $X=(W_1,W_2,\partial)$ is an $n$-complete crossed module, where $W_i=A_i wr B_i$ is the wreath product of groups $A_i$ and $B_i$, then $A_i$ is at most $n$-complete, for $i=1,2.$ Moreover, we show that when $X=(W_1,W_2,\partial)$ is an $n$-complete crossed module, where $A_i$ is nilpotent and $B_i$ is nilpotent of class $n$, for $i=1,2$, then if $A_i$ is an abelian group, then it is cyclic of order $p_i.$ Also, if $W_i=C_ pwr C_2$, where $p$ is prime with $p>3$, $i=1,2$, then $X=(W_1,W_2,\partial)$ is not an $n$-complete crossed module.

References

  • J. H. C. Whitehead, Combinatorial homotopy II, Bulletin of the American Mathematical Society, 55, (1949) 453-496.
  • M. Alp, Actor of crossed modules of algebroids, 16th International Conference of Jangjeon Mathematical Society, 16, (2005), 6-15.
  • K. Norrie, Actions and automorphisms of crossed modules, Bulletin de la Societe Mathematique de France, 118, (1990) 129-146.
  • D. Conduche and C. Rodriguez-Fernandez, Non-abelian tensor and exterior products module $q$ and universal $q$-center relative extension, Journal of Pure and Applied Algebra, 78(2), (1992) 139-160.
  • J. L. Doncel-Juurez, A. R.-Crondjeanl.-Valcarcel, $q$-perfect crossed modules, Journal of Pure and Applied Algebra, 81, (1992) 279-292.
  • M. Alp, C. D. Wenseley, Automorphisms and homotopies of groupoids and crossed modules, Applied Categorical Structures, 18, (2010) 473-504.
  • R. Brown, Higher-dimensional group theory. Low-dimensional topology (Bangor, 1979), pp. 215-238, London Mathematical Society Lecture Note Series, 48, Cambridge University Press, Cambridge-New York, 1982.
  • C. Houghton, On the automorphisms groups of certain wreath products, Publicationes Mathematicae Debrecen, 9, (1963) 307-313.
  • J. Panagopoulos, Groups of automorphisms of standard wreath products, Archiv der Mathematik, 37, (1981) 499-511.
  • P. M. Neumann, On the structure of standard wreath products of groups, Mathematische Zeitschrift, 84, (1964) 343-373.
  • J. Panagopoulos, A semicomplete standard wreath products, Archiv der Mathematik, 43, (1984) 301-302.
  • J. Panagopoulos, The groups of central automorphisms of the standard wreath products, Archiv der Mathematik, 45, (1985) 411-417.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

M.a. Dehghani This is me 0000-0001-6327-6416

B. Davvaz 0000-0003-1941-5372

Publication Date April 30, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Dehghani, M., & Davvaz, B. (2021). n-complete crossed modules and wreath products of groups. Journal of New Results in Science, 10(1), 38-45.
AMA Dehghani M, Davvaz B. n-complete crossed modules and wreath products of groups. JNRS. April 2021;10(1):38-45.
Chicago Dehghani, M.a., and B. Davvaz. “N-Complete Crossed Modules and Wreath Products of Groups”. Journal of New Results in Science 10, no. 1 (April 2021): 38-45.
EndNote Dehghani M, Davvaz B (April 1, 2021) n-complete crossed modules and wreath products of groups. Journal of New Results in Science 10 1 38–45.
IEEE M. Dehghani and B. Davvaz, “n-complete crossed modules and wreath products of groups”, JNRS, vol. 10, no. 1, pp. 38–45, 2021.
ISNAD Dehghani, M.a. - Davvaz, B. “N-Complete Crossed Modules and Wreath Products of Groups”. Journal of New Results in Science 10/1 (April 2021), 38-45.
JAMA Dehghani M, Davvaz B. n-complete crossed modules and wreath products of groups. JNRS. 2021;10:38–45.
MLA Dehghani, M.a. and B. Davvaz. “N-Complete Crossed Modules and Wreath Products of Groups”. Journal of New Results in Science, vol. 10, no. 1, 2021, pp. 38-45.
Vancouver Dehghani M, Davvaz B. n-complete crossed modules and wreath products of groups. JNRS. 2021;10(1):38-45.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).