Research Article
BibTex RIS Cite
Year 2021, Volume: 10 Issue: 2, 23 - 32, 31.08.2021

Abstract

Thanks

Sermet Koyuncu ve Koray Kara' ya katkılarından dolayı teşekkür ederim.

References

  • S. R. Forrest, M. E. Thompson, Introduction: Organic electronics and optoelectronics, Chemical Reviews, 107(4), (2007) 923-925.
  • R. R. Søndergaard, M. Hösel, F. C. Krebs, Roll‐to‐Roll fabrication of large area functional organic materials, Journal of Polymer Science Part B: Polymer Physics, 51(1), (2013) 16-34.
  • Q. Liu, Y. Wang, L. Arunagiri, M. Khatib, S. Manzhos, K. Feron, S. E. Bottle, H. Haick, H. Yan, T. Michinobu, P. Sonar, Versatile nature of anthanthrone based polymers as active multifunctional semiconductors for various organic electronic devices, Materials Advances, 1(9), (2020) 3428-3438.
  • J. T. Kim, H. C. Jin, J. H. Kim, D. W. Chang, Enhanced photovoltaic performance of quinoxaline-based small molecules through incorporating trifluoromethyl substituents, Molecular Crystals and Liquid Crystals, 685(1), (2019) 22-28.
  • J. T. Kim, H. C. Jin, S. K. Putri, D. R. Whang, J. H. Kim, D. W. Chang, Synthesis of quinoxaline-based small molecules possessing multiple electron-withdrawing moieties for photovoltaic applications, Macromolecular Research, 27(12), (2019) 1268-1274.
  • J. Hou, M. H. Park, S. Zhang, Y. Yao, L. M. Chen, J. H. Li, Y. Yang, Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo [1, 2-b: 4, 5-b′] dithiophene, Macromolecules, 41(16), (2008) 6012-6018.
  • J. Sworakowski, How accurate are energies of HOMO and LUMO levels in small-molecule organic semiconductors determined from cyclic voltammetry or optical spectroscopy?, Synthetic Metals, 235, (2018) 125-130.
  • C. K. Wang, B. H. Jiang, J. H. Lu, M. T. Cheng, R. J. Jeng, Y. W. Lu, C. P. Chen, K. T. Wong, A near‐infrared absorption small molecule acceptor for high‐performance semitransparent and colorful binary and ternary organic photovoltaics, ChemSusChem, 13(5), (2020) 903-913.
  • R. Wang, J. Yuan, R. Wang, G. Han, T. Huang, W. Huang, J. Xue, H. C. Wang, C. Zhang, C. Zhu, P. Cheng, D. Meng, Y. Yi, K. H. Wei, Y. Zou, Y. Yang, Rational tuning of molecular interaction and energy level alignment enables high‐performance organic photovoltaics, Advanced Materials, 31(43), (2019) 1904215.
  • H. Bohra, H. Chen, Y. Peng, A. Efrem, F. He, M. Wang, Direct arylation polymerization toward efficient synthesis of benzo [1, 2‐c: 4, 5‐c'] dithiophene‐4, 8‐dione based donor‐acceptor alternating copolymers for organic optoelectronic applications, Journal of Polymer Science Part A: Polymer Chemistry, 56(22), (2018) 2554-2564.
  • Y. S. Byun, J. H. Kim, J. B. Park, I. N. Kang, S. H. Jin, D. H. Hwang., Full donor-type conjugated polymers consisting of alkoxy-or alkylselenophene-substituted benzodithiophene and thiophene units for organic photovoltaic devices, Synthetic Metals, 168, (2013) 23-30.
  • T. Ikai, R. Kojima, S. Katori, T. Yamamoto, T. Kuwabara, K. Maeda, K. Takahashi, S. Kanoh, Thieno [3, 4-b] thiophene–benzo [1, 2-b: 4, 5-b′] dithiophene-based polymers bearing optically pure 2-ethylhexyl pendants: Synthesis and application in polymer solar cells, Polymer, 56, (2015) 171-177.
  • C. L. Chochos, P. Chávez, İ. Bulut, P. Lévêque, M. Spanos, E. Tatsi, A. Katsouras, A. Avgeropoulos, V. G. Gregoriou, N. Leclerc, Experimental and theoretical investigations on the optical and electrochemical properties of π-conjugated donor-acceptor-donor (DAD) compounds toward a universal model, The Journal of Chemical Physics, 149(12), (2018) 124902.
  • Y. Kim, C. E. Song, A. Cho, J. Kim, Y. Eom, J. Ahn, S. J. Moon, E. Lim, Synthesis of diketopyrrolopyrrole (DPP)-based small molecule donors containing thiophene or furan for photovoltaic applications, Materials Chemistry and Physics, 143(2), (2014) 825-829.
  • R. C. Coffin, C. M. MacNeill, E. D. Peterson, J. W. Ward, J. W. Owen, C. A. McLellan, G. M. Smith, R. E. Noftle, O. D. Jurchescu, D. L. Carroll, Variation of the side chain branch position leads to vastly improved molecular weight and OPV performance in 4, 8-dialkoxybenzo [1, 2-b: 4, 5-b′] dithiophene/2, 1, 3-benzothiadiazole copolymers, Journal of Nanotechnology, 2011, (2011).
  • J. Subbiah, B. Purushothaman, M. Chen, T.i Qin, M. Gao, D. Vak, F. H. Scholes, X. Chen, S. E. Watkins, G. J. Wilson, A. B. Holmes, W. W. H. Wong, D. J. Jones, Organic solar cells using a high‐molecular‐weight benzodithiophene–benzothiadiazole copolymer with an efficiency of 9.4%, Advanced Materials, 27(4), (2015) 702-705.
  • X. Zhou, W. Tang, P. Bi, Z. Liu, W. Lu, X. Wang, X. Hao, W. K. Wong, X. Zhu, Enhanced light-harvesting of benzodithiophene conjugated porphyrin electron donors in organic solar cells, Journal of Materials Chemistry C, 7(2), (2019) 380-386.
  • S. Chen, L. Xiao, X. Zhu, X. Peng, W. K. Wong, W. Y. Wong, Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics, Chemical Communications, 51(77), (2015) 14439-14442.
  • S. Loser, C. J. Bruns, H. Miyauchi, R. P. Ortiz, A. Facchetti, S. I. Stupp, T. J. Marks, A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells, Journal of the American Chemical Society, 133(21), (2011) 8142-8145.
  • T. I. Ryu, Y. Yoon, J. H. Kim, D. H. Hwang, M. J. Ko, D. K. Lee, J. Y. Kim, H. Kim, N. G. Park, B. Kim, H. J. Son, Simultaneous enhancement of solar cell efficiency and photostability via chemical tuning of electron donating units in diketopyrrolopyrrole-based push-pull type polymers, Macromolecules, 47(18), (2014) 6270-6280.
  • D. Kıymaz, M. Sezgin, E. Sefer, C. Zafer, S. Koyuncu, Carbazole based DA-π-A chromophores for dye-sensitized solar cells: Effect of the side alkyl chain length on device performance, International Journal of Hydrogen Energy, 42(12), (2017) 8569-8575.
  • Y. Li, B. Xu, P. Song, F.i Ma, M. Sun, D–A− π–A system: light harvesting, charge transfer, and molecular designing, The Journal of Physical Chemistry C, 121(23), (2017) 12546-12561.
  • H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature photonics, 3(11), (2009) 649-653.
  • Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future–bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Advanced Materials, 22(20), (2010) E135-E138.
  • J. Warnan, A. E. Labban, C. Cabanetos, E. T. Hoke, P. K. Shukla, C. Risko, J. L. Brédas, M. D. McGehee, P. M. Beaujuge, Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells, Chemistry of Materials, 26(7), (2014) 2299-2306.
  • D. Gedefaw, M. Tessarolo, M. Bolognesi, M. Prosa, R. Kroon, W. Zhuang, P. Henriksson, K. Bini, E. Wang, M. Muccini, M. Seri, M. R. Andersson, Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications, Beilstein Journal of Organic Chemistry, 12(1), (2016) 1629-1637.
  • E. Karabıyık, E. Sefer, F. B. Koyuncu, M. Tonga, E. Özdemir, S. Koyuncu, Toward purple-to-green-to-transmissive-to-black color switching in polymeric electrochrome, Macromolecules, 47(24), (2014) 8578-8584.

Synthesis, structural and electrochemical characterization of quinoxaline-bridged benzodithiophene-carbazole based donor-acceptor-donor type organic semiconductor for OFET application

Year 2021, Volume: 10 Issue: 2, 23 - 32, 31.08.2021

Abstract

In this study, the synthesis, structural, and electrochemical properties of quinoxaline-bridged functional benzodithiophene-carbazole (BDT-QCzb) based organic semiconductor materials that can be used in OFET devices were investigated. Donor-acceptor (D–A) type small molecules (SMs) are highly interested in several organic semiconductor materials. Considering the advantages of D-A type molecules, BDT-QCzb based materials were synthesized, and their structural characterization was performed by 1H-NMR and 1C-NMR. The energies of HOMO and LUMO levels in small-molecule organic semiconductors were determined experimentally by cyclic voltammetry (CV) and theoretically by the Spartan 18 software program. Surface characterization is made by Scanning Electron Microscopy (SEM). The electric properties of the materials are investigated by analyzing in OFET application in terms of charge mobility.

References

  • S. R. Forrest, M. E. Thompson, Introduction: Organic electronics and optoelectronics, Chemical Reviews, 107(4), (2007) 923-925.
  • R. R. Søndergaard, M. Hösel, F. C. Krebs, Roll‐to‐Roll fabrication of large area functional organic materials, Journal of Polymer Science Part B: Polymer Physics, 51(1), (2013) 16-34.
  • Q. Liu, Y. Wang, L. Arunagiri, M. Khatib, S. Manzhos, K. Feron, S. E. Bottle, H. Haick, H. Yan, T. Michinobu, P. Sonar, Versatile nature of anthanthrone based polymers as active multifunctional semiconductors for various organic electronic devices, Materials Advances, 1(9), (2020) 3428-3438.
  • J. T. Kim, H. C. Jin, J. H. Kim, D. W. Chang, Enhanced photovoltaic performance of quinoxaline-based small molecules through incorporating trifluoromethyl substituents, Molecular Crystals and Liquid Crystals, 685(1), (2019) 22-28.
  • J. T. Kim, H. C. Jin, S. K. Putri, D. R. Whang, J. H. Kim, D. W. Chang, Synthesis of quinoxaline-based small molecules possessing multiple electron-withdrawing moieties for photovoltaic applications, Macromolecular Research, 27(12), (2019) 1268-1274.
  • J. Hou, M. H. Park, S. Zhang, Y. Yao, L. M. Chen, J. H. Li, Y. Yang, Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo [1, 2-b: 4, 5-b′] dithiophene, Macromolecules, 41(16), (2008) 6012-6018.
  • J. Sworakowski, How accurate are energies of HOMO and LUMO levels in small-molecule organic semiconductors determined from cyclic voltammetry or optical spectroscopy?, Synthetic Metals, 235, (2018) 125-130.
  • C. K. Wang, B. H. Jiang, J. H. Lu, M. T. Cheng, R. J. Jeng, Y. W. Lu, C. P. Chen, K. T. Wong, A near‐infrared absorption small molecule acceptor for high‐performance semitransparent and colorful binary and ternary organic photovoltaics, ChemSusChem, 13(5), (2020) 903-913.
  • R. Wang, J. Yuan, R. Wang, G. Han, T. Huang, W. Huang, J. Xue, H. C. Wang, C. Zhang, C. Zhu, P. Cheng, D. Meng, Y. Yi, K. H. Wei, Y. Zou, Y. Yang, Rational tuning of molecular interaction and energy level alignment enables high‐performance organic photovoltaics, Advanced Materials, 31(43), (2019) 1904215.
  • H. Bohra, H. Chen, Y. Peng, A. Efrem, F. He, M. Wang, Direct arylation polymerization toward efficient synthesis of benzo [1, 2‐c: 4, 5‐c'] dithiophene‐4, 8‐dione based donor‐acceptor alternating copolymers for organic optoelectronic applications, Journal of Polymer Science Part A: Polymer Chemistry, 56(22), (2018) 2554-2564.
  • Y. S. Byun, J. H. Kim, J. B. Park, I. N. Kang, S. H. Jin, D. H. Hwang., Full donor-type conjugated polymers consisting of alkoxy-or alkylselenophene-substituted benzodithiophene and thiophene units for organic photovoltaic devices, Synthetic Metals, 168, (2013) 23-30.
  • T. Ikai, R. Kojima, S. Katori, T. Yamamoto, T. Kuwabara, K. Maeda, K. Takahashi, S. Kanoh, Thieno [3, 4-b] thiophene–benzo [1, 2-b: 4, 5-b′] dithiophene-based polymers bearing optically pure 2-ethylhexyl pendants: Synthesis and application in polymer solar cells, Polymer, 56, (2015) 171-177.
  • C. L. Chochos, P. Chávez, İ. Bulut, P. Lévêque, M. Spanos, E. Tatsi, A. Katsouras, A. Avgeropoulos, V. G. Gregoriou, N. Leclerc, Experimental and theoretical investigations on the optical and electrochemical properties of π-conjugated donor-acceptor-donor (DAD) compounds toward a universal model, The Journal of Chemical Physics, 149(12), (2018) 124902.
  • Y. Kim, C. E. Song, A. Cho, J. Kim, Y. Eom, J. Ahn, S. J. Moon, E. Lim, Synthesis of diketopyrrolopyrrole (DPP)-based small molecule donors containing thiophene or furan for photovoltaic applications, Materials Chemistry and Physics, 143(2), (2014) 825-829.
  • R. C. Coffin, C. M. MacNeill, E. D. Peterson, J. W. Ward, J. W. Owen, C. A. McLellan, G. M. Smith, R. E. Noftle, O. D. Jurchescu, D. L. Carroll, Variation of the side chain branch position leads to vastly improved molecular weight and OPV performance in 4, 8-dialkoxybenzo [1, 2-b: 4, 5-b′] dithiophene/2, 1, 3-benzothiadiazole copolymers, Journal of Nanotechnology, 2011, (2011).
  • J. Subbiah, B. Purushothaman, M. Chen, T.i Qin, M. Gao, D. Vak, F. H. Scholes, X. Chen, S. E. Watkins, G. J. Wilson, A. B. Holmes, W. W. H. Wong, D. J. Jones, Organic solar cells using a high‐molecular‐weight benzodithiophene–benzothiadiazole copolymer with an efficiency of 9.4%, Advanced Materials, 27(4), (2015) 702-705.
  • X. Zhou, W. Tang, P. Bi, Z. Liu, W. Lu, X. Wang, X. Hao, W. K. Wong, X. Zhu, Enhanced light-harvesting of benzodithiophene conjugated porphyrin electron donors in organic solar cells, Journal of Materials Chemistry C, 7(2), (2019) 380-386.
  • S. Chen, L. Xiao, X. Zhu, X. Peng, W. K. Wong, W. Y. Wong, Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics, Chemical Communications, 51(77), (2015) 14439-14442.
  • S. Loser, C. J. Bruns, H. Miyauchi, R. P. Ortiz, A. Facchetti, S. I. Stupp, T. J. Marks, A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells, Journal of the American Chemical Society, 133(21), (2011) 8142-8145.
  • T. I. Ryu, Y. Yoon, J. H. Kim, D. H. Hwang, M. J. Ko, D. K. Lee, J. Y. Kim, H. Kim, N. G. Park, B. Kim, H. J. Son, Simultaneous enhancement of solar cell efficiency and photostability via chemical tuning of electron donating units in diketopyrrolopyrrole-based push-pull type polymers, Macromolecules, 47(18), (2014) 6270-6280.
  • D. Kıymaz, M. Sezgin, E. Sefer, C. Zafer, S. Koyuncu, Carbazole based DA-π-A chromophores for dye-sensitized solar cells: Effect of the side alkyl chain length on device performance, International Journal of Hydrogen Energy, 42(12), (2017) 8569-8575.
  • Y. Li, B. Xu, P. Song, F.i Ma, M. Sun, D–A− π–A system: light harvesting, charge transfer, and molecular designing, The Journal of Physical Chemistry C, 121(23), (2017) 12546-12561.
  • H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature photonics, 3(11), (2009) 649-653.
  • Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future–bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Advanced Materials, 22(20), (2010) E135-E138.
  • J. Warnan, A. E. Labban, C. Cabanetos, E. T. Hoke, P. K. Shukla, C. Risko, J. L. Brédas, M. D. McGehee, P. M. Beaujuge, Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells, Chemistry of Materials, 26(7), (2014) 2299-2306.
  • D. Gedefaw, M. Tessarolo, M. Bolognesi, M. Prosa, R. Kroon, W. Zhuang, P. Henriksson, K. Bini, E. Wang, M. Muccini, M. Seri, M. R. Andersson, Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications, Beilstein Journal of Organic Chemistry, 12(1), (2016) 1629-1637.
  • E. Karabıyık, E. Sefer, F. B. Koyuncu, M. Tonga, E. Özdemir, S. Koyuncu, Toward purple-to-green-to-transmissive-to-black color switching in polymeric electrochrome, Macromolecules, 47(24), (2014) 8578-8584.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hakan Bilgili 0000-0001-5646-6641

Publication Date August 31, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Bilgili, H. (2021). Synthesis, structural and electrochemical characterization of quinoxaline-bridged benzodithiophene-carbazole based donor-acceptor-donor type organic semiconductor for OFET application. Journal of New Results in Science, 10(2), 23-32.
AMA Bilgili H. Synthesis, structural and electrochemical characterization of quinoxaline-bridged benzodithiophene-carbazole based donor-acceptor-donor type organic semiconductor for OFET application. JNRS. August 2021;10(2):23-32.
Chicago Bilgili, Hakan. “Synthesis, Structural and Electrochemical Characterization of Quinoxaline-Bridged Benzodithiophene-Carbazole Based Donor-Acceptor-Donor Type Organic Semiconductor for OFET Application”. Journal of New Results in Science 10, no. 2 (August 2021): 23-32.
EndNote Bilgili H (August 1, 2021) Synthesis, structural and electrochemical characterization of quinoxaline-bridged benzodithiophene-carbazole based donor-acceptor-donor type organic semiconductor for OFET application. Journal of New Results in Science 10 2 23–32.
IEEE H. Bilgili, “Synthesis, structural and electrochemical characterization of quinoxaline-bridged benzodithiophene-carbazole based donor-acceptor-donor type organic semiconductor for OFET application”, JNRS, vol. 10, no. 2, pp. 23–32, 2021.
ISNAD Bilgili, Hakan. “Synthesis, Structural and Electrochemical Characterization of Quinoxaline-Bridged Benzodithiophene-Carbazole Based Donor-Acceptor-Donor Type Organic Semiconductor for OFET Application”. Journal of New Results in Science 10/2 (August 2021), 23-32.
JAMA Bilgili H. Synthesis, structural and electrochemical characterization of quinoxaline-bridged benzodithiophene-carbazole based donor-acceptor-donor type organic semiconductor for OFET application. JNRS. 2021;10:23–32.
MLA Bilgili, Hakan. “Synthesis, Structural and Electrochemical Characterization of Quinoxaline-Bridged Benzodithiophene-Carbazole Based Donor-Acceptor-Donor Type Organic Semiconductor for OFET Application”. Journal of New Results in Science, vol. 10, no. 2, 2021, pp. 23-32.
Vancouver Bilgili H. Synthesis, structural and electrochemical characterization of quinoxaline-bridged benzodithiophene-carbazole based donor-acceptor-donor type organic semiconductor for OFET application. JNRS. 2021;10(2):23-32.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).