Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 2, 111 - 119, 31.08.2022
https://doi.org/10.54187/jnrs.1109009

Abstract

References

  • S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • S. Saha Ray, R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Applied Mathematics and Computation, 167(1), (2005) 561–571.
  • Z. M. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of Nonlinear Sciences and Numerical Simulation, 7(1), (2006) 27–34.
  • S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Physics Letters A, 365(5–6), (2007) 345–350.
  • L. Song, H. Zhang, Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation, Physics Letters A, 367(1–2), (2007) 88–94.
  • J. K. Zhou, Differential Transformation and its Applications for Electric Circuits, Huazhong University Press, Wuhan, China, 1986, (in Chinese).
  • M. Casso, S. Wortmann, U. Rizza, Analytic modeling of two-dimensional transient atmospheric pollutant dispersion by double GITT and Laplace transform techniques, Environmental Modelling & Software, 24(1), (2009) 144–151.
  • E. Sejdic, I. Djurovic, L. Stankovic, Fractional Fourier transform as a signal processing tool: an overview of recent developments, Signal Processing, 91(6), (2011) 1351–1369.
  • R. M. Cotta, M. D. Mikhailov, Integral transform method, Applied Mathematical Modelling, 17(3), (1993) 156–161.
  • X. Yang, Local fractional integral transforms, Progress in Nonlinear Science, 4, (2011) 1–225.
  • Z. Odibat, S. Momani, Numerical solution of Fokker-Planck equation with space and time fractional derivatives, Physics Letters A, 369(5–6), (2007) 349–358.
  • M. Garg, P. Manohar, Analytical solution of space-time fractional Fokker-Planck equations by generalized differential transform method, Le Matematiche, 66, (2011) 91–101.
  • Ü. Cansu, O. Özkan, Solving Fokker-Planck equation by two-dimensional differential transform, Advances in Mathematical and Computational Methods, 73, (2011) 1368.
  • R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, (2014) 65–70.
  • K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  • A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • H. Rezazadeh, J. Manaan, F. S. Khodadad, F. Nazari, Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improved tan⁡〖1/2〗 φ(ξ)-expansion method, Optical and Quantum Electronics, 50(3), (2018) Article Number: 121, 1–15.
  • A. Korkmaz, O. E. Hepson, Hyperbolic tangent solution to the conformable time fractional Zakharov-Kuznetsov equation in 3D space, In AIP Conference Proceedings, 1926(1), (2018) 020023.
  • M. S. Hashemi, Some new exact solutions of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time-fractional derivative, Optical and Quantum Electronics, 50(2), (2018) Article Number: 79, 1–11.
  • C. Chen, Y. L. Jiang, Simplest equation method for some time-fractional partial differential equations with conformable derivative, Computers & Mathematics with Applications, 75(8), (2018) 2978–2988.
  • O. Özkan, A. Kurt, On conformable double Laplace transform, Optical and Quantum Electronics, 50(2), (2018) Article Number: 103, 1–9.
  • T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, (2015) 57–66.
  • M. J. Jang, C. L. Chen, Y. C. Liu, Two-dimensional differential transform for partial differential equations, Applied Mathematics and Computation 121(2–3), (2001) 261–270.
  • C. L. Chen, S. H. Ho, Solving partial differential equations by two-dimensional transform method, Applied Mathematics and Computation, 106(2–3), (1999) 171–179.

A hybrid algorithm for solving fractional Fokker-Planck equations arising in physics and engineering

Year 2022, Volume: 11 Issue: 2, 111 - 119, 31.08.2022
https://doi.org/10.54187/jnrs.1109009

Abstract

In this work, we proposed a hybrid algorithm to approximate the solution of Conformable Fractional Fokker-Planck Equation (CFFPE). This algorithm comprises of unification of two methods named Fractional Wave Transformation Method (FWTM) and Differential Transform Method (DTM). The method is based on two steps. The first step is to reduce the given CFPDEs to corresponding Partial Differential Equations (PDEs). Then, the second step is to solve obtained PDEs iteratively by using DTM. Moreover, the algorithm’s efficiency is shown by employing the method successfully to conformable time-fractional Fokker-Planck equation arising in surface physics, plasma physics, polymer physics, laser physics, biophysics, engineering, neurosciences, nonlinear hydrodynamics, population dynamics, pattern formation and marketing. As a result, the obtained data demonstrate that the algorithm is reliable and applicable.

References

  • S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • S. Saha Ray, R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Applied Mathematics and Computation, 167(1), (2005) 561–571.
  • Z. M. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of Nonlinear Sciences and Numerical Simulation, 7(1), (2006) 27–34.
  • S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Physics Letters A, 365(5–6), (2007) 345–350.
  • L. Song, H. Zhang, Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation, Physics Letters A, 367(1–2), (2007) 88–94.
  • J. K. Zhou, Differential Transformation and its Applications for Electric Circuits, Huazhong University Press, Wuhan, China, 1986, (in Chinese).
  • M. Casso, S. Wortmann, U. Rizza, Analytic modeling of two-dimensional transient atmospheric pollutant dispersion by double GITT and Laplace transform techniques, Environmental Modelling & Software, 24(1), (2009) 144–151.
  • E. Sejdic, I. Djurovic, L. Stankovic, Fractional Fourier transform as a signal processing tool: an overview of recent developments, Signal Processing, 91(6), (2011) 1351–1369.
  • R. M. Cotta, M. D. Mikhailov, Integral transform method, Applied Mathematical Modelling, 17(3), (1993) 156–161.
  • X. Yang, Local fractional integral transforms, Progress in Nonlinear Science, 4, (2011) 1–225.
  • Z. Odibat, S. Momani, Numerical solution of Fokker-Planck equation with space and time fractional derivatives, Physics Letters A, 369(5–6), (2007) 349–358.
  • M. Garg, P. Manohar, Analytical solution of space-time fractional Fokker-Planck equations by generalized differential transform method, Le Matematiche, 66, (2011) 91–101.
  • Ü. Cansu, O. Özkan, Solving Fokker-Planck equation by two-dimensional differential transform, Advances in Mathematical and Computational Methods, 73, (2011) 1368.
  • R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, (2014) 65–70.
  • K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  • A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • H. Rezazadeh, J. Manaan, F. S. Khodadad, F. Nazari, Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improved tan⁡〖1/2〗 φ(ξ)-expansion method, Optical and Quantum Electronics, 50(3), (2018) Article Number: 121, 1–15.
  • A. Korkmaz, O. E. Hepson, Hyperbolic tangent solution to the conformable time fractional Zakharov-Kuznetsov equation in 3D space, In AIP Conference Proceedings, 1926(1), (2018) 020023.
  • M. S. Hashemi, Some new exact solutions of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time-fractional derivative, Optical and Quantum Electronics, 50(2), (2018) Article Number: 79, 1–11.
  • C. Chen, Y. L. Jiang, Simplest equation method for some time-fractional partial differential equations with conformable derivative, Computers & Mathematics with Applications, 75(8), (2018) 2978–2988.
  • O. Özkan, A. Kurt, On conformable double Laplace transform, Optical and Quantum Electronics, 50(2), (2018) Article Number: 103, 1–9.
  • T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, (2015) 57–66.
  • M. J. Jang, C. L. Chen, Y. C. Liu, Two-dimensional differential transform for partial differential equations, Applied Mathematics and Computation 121(2–3), (2001) 261–270.
  • C. L. Chen, S. H. Ho, Solving partial differential equations by two-dimensional transform method, Applied Mathematics and Computation, 106(2–3), (1999) 171–179.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ozan Özkan 0000-0001-6430-1126

Ali Kurt 0000-0002-0617-6037

Publication Date August 31, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Özkan, O., & Kurt, A. (2022). A hybrid algorithm for solving fractional Fokker-Planck equations arising in physics and engineering. Journal of New Results in Science, 11(2), 111-119. https://doi.org/10.54187/jnrs.1109009
AMA Özkan O, Kurt A. A hybrid algorithm for solving fractional Fokker-Planck equations arising in physics and engineering. JNRS. August 2022;11(2):111-119. doi:10.54187/jnrs.1109009
Chicago Özkan, Ozan, and Ali Kurt. “A Hybrid Algorithm for Solving Fractional Fokker-Planck Equations Arising in Physics and Engineering”. Journal of New Results in Science 11, no. 2 (August 2022): 111-19. https://doi.org/10.54187/jnrs.1109009.
EndNote Özkan O, Kurt A (August 1, 2022) A hybrid algorithm for solving fractional Fokker-Planck equations arising in physics and engineering. Journal of New Results in Science 11 2 111–119.
IEEE O. Özkan and A. Kurt, “A hybrid algorithm for solving fractional Fokker-Planck equations arising in physics and engineering”, JNRS, vol. 11, no. 2, pp. 111–119, 2022, doi: 10.54187/jnrs.1109009.
ISNAD Özkan, Ozan - Kurt, Ali. “A Hybrid Algorithm for Solving Fractional Fokker-Planck Equations Arising in Physics and Engineering”. Journal of New Results in Science 11/2 (August 2022), 111-119. https://doi.org/10.54187/jnrs.1109009.
JAMA Özkan O, Kurt A. A hybrid algorithm for solving fractional Fokker-Planck equations arising in physics and engineering. JNRS. 2022;11:111–119.
MLA Özkan, Ozan and Ali Kurt. “A Hybrid Algorithm for Solving Fractional Fokker-Planck Equations Arising in Physics and Engineering”. Journal of New Results in Science, vol. 11, no. 2, 2022, pp. 111-9, doi:10.54187/jnrs.1109009.
Vancouver Özkan O, Kurt A. A hybrid algorithm for solving fractional Fokker-Planck equations arising in physics and engineering. JNRS. 2022;11(2):111-9.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).