Research Article
BibTex RIS Cite

A new colorimetric sensor based on semithiocarbazone for some anions: 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-N-phenylhydrazine-1-carbothioamide

Year 2023, Volume: 12 Issue: 2, 108 - 117, 31.08.2023
https://doi.org/10.54187/jnrs.1338019

Abstract

Carbazones are molecules containing important functional groups in designing anion chemosensors due to proton donor and acceptor sites in their structures. In this paper, we synthesize a novel colorimetric receptor with 1,3-dioxo-indene and thiosemicarbazone moieties by the reaction of ninhydrin and 4-phenyl-thiosemicarbazide in quantitative yield. We then identify its structure by means of FT-IR, $^{1}$H-NMR, $^{13}$C-NMR, and MS spectroscopic techniques. Moreover, we observe the reaction of the title compound with biologically important F$^¯$, OAc$^¯$, CN$^¯$, H2PO4$^¯$, and OH$^¯$ anions in the presence of other anions, such as Cl$^¯$, Br$^¯$, I$^¯$, SCN$^¯$, and OCl$^¯$ in dimethylsulfoxide solution through a color change from yellow to orange-red that can easily be distinguished even by the naked eye under ambient light. Finally, we evaluate the anion-sensing ability of the title compound via UV-vis spectroscopic studies.

References

  • P. D. Beer, P. A. Gale, Anion recognition and sensing: The state of the art and future perspectives, Angewandte Chemie International Edition 40 (3) (2001) 486–516.
  • W. S. Sessler, J. L. Gale, P. A. Cho, Anion receptor chemistry, Royal Society of Chemistry: Cambridge, UK, 2006.
  • A. I. Ismail, H. Hasson, Fluoride supplements, dental caries and fluorosis, The Journal of the American Dental Association 139 (11) (2008) 1457–1468.
  • J. A. Weatherall, Pharmacology of Fluorides,: In Handbook of Experimental Pharmacology XX/2, Springer‐Verlag, Berlin, 1969, Part 2, pp. 141–172.
  • S. Bose, V. Ramesh, J. W. Locasale, Acetate metabolism in physiology, cancer, and beyond, Trends in Cell Biology 29 (9) (2019) 695–703.
  • K. Kritmetapak, R. Kumar, Phosphate as a signaling molecule, Calcified Tissue International 108 (1) (2021) 16–31.
  • E. Jaszczak, Ż. Polkowska, S. Narkowicz, J. Namieśnik, Cyanides in the environment-analysis problems and challenges, Environmental Science and Pollution Research 24 (19) (2017) 15929–15948.
  • N. Kuyucak, A. Akcil, Cyanide and removal options from effluents in gold mining and metallurgical processes, Minerals Engineering 50–51 (2013) 13–29.
  • L. Chen, S. N. Berry, X. Wu, E. N. W. Howe, P. A. Gale, Advances in anion receptor chemistry, Chemistry 6 (1) (2020) 61–141.
  • M. Wenzel, J. R. Hiscock, P. A. Gale, Anion receptor chemistry: Highlights from 2010, Chemical Society Reviews 41 (1) (2012) 480–520.
  • J. Krämer, R. Kang, L. M. Grimm, L. De Cola, P. Picchetti, F. Biedermann, Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids, Chemical Reviews 122 (3) (2022) 3459–3636.
  • E. A. Kataev, C. Müller, G. V. Kolesnikov, V. N. Khrustalev, Guanidinium-based artificial receptors for binding orthophosphate in aqueous solution, European Journal of Organic Chemistry 2014 (13) (2014) 2747–2753.
  • Z. Dong, G. Gao, Recognition and sensing of anions through synergistic effects using simple benzimidazolium-urea receptors, Chinese Science Bulletin 57 (2012) 1266–1274.
  • F. Aydin, N. Tunoglu, D. Aykac, Synthesis of two novel aroyl thioureas and their use as anion binding receptors, Asian Journal of Chemistry 25 (5) (2013) 2455–2458.
  • F. Aydin, E. Dagci, N,N′-Bis-(4-nitrophenylcarbamothioyl)phthalamide, Molbank 2013 (4) (2013) M809.
  • I. Basaran, M. Emami Khansari, A. Pramanik, B. M. Wong, M. A. Hossain, Binding and selectivity of dihydrogen phosphate by H-bond donors and acceptors in a tripodal-based thiourea receptor, Tetrahedron Letters 56 (1) (2015) 115–118.
  • Y. H. Qiao, H. Lin, H. K. Lin, A novel colorimetric sensor for anions recognition based on disubstituted phenylhydrazone, Journal of Inclusion Phenomena and Macrocyclic Chemistry 59 (2007) 211–215.
  • S. Rattanopas, P. Piyanuch, K. Wisansin, A. Charoenpanich, J. Sirirak, W. Phutdhawong, N. Wanichacheva, Indole-based fluorescent sensors for selective sensing of $Fe^{2+}$ and $Fe^{3+}$ in aqueous buffer systems and their applications in living cells, Journal of Photochemistry and Photobiology A: Chemistry 377 (2019) 138–148.
  • S. Mondal, A. K. Bhanja, D. Ojha, T. K. Mondal, D. Chattopadhyay, C. Sinha, Fluorescence sensing and intracellular imaging of $Al^{3+}$ ions by using naphthalene based sulfonamide chemosensor: structure, computation and biological studies, RSC Advances 5 (90) (2015) 73626–73638.
  • J. Parikh, K. Bhatt, K. Modi, N. Patel, A. Desai, S. Kumar, B. Mohan, A versatile enrichment of functionalized calixarene as a facile sensor for amino acids, Luminescence 37 (3) (2022) 370–390.
  • H. M. Junaid, M. Batool, F. W. Harun, M. S. Akhter, N. Shabbir, Naked eye chemosensing of anions by Schiff bases, Critical Reviews in Analytical Chemistry 52 (3) (2022) 463–480.
  • O. Özbek, C. Berkel, Sensor properties of thiosemicarbazones in different analyical methods, Polyhedron, 238 (2023) Article Number 116426 16 pages.
  • T. K. Ghorpade, M. Patri, S. P. Mishra, Highly sensitive colorimetric and fluorometric anion sensors based on mono and di-calix[4]pyrrole substituted diketopyrrolopyrroles, Sensors and Actuators B: Chemical 225 (2016) 428–435.
  • R. C. R. Gonçalves, M. L. Boland, S. P. G. Costa, M. M. M. Raposo, Anion dual mode fluoro-chromogenic chemosensor based on a BODIPY core, Engineering Proceedings 27 (1) (2022) 6 pages.
  • Y. M. Hijji, B. Barare, Y. Zhang, Lawsone (2-hydroxy-1,4-naphthoquinone) as a sensitive cyanide and acetate sensor, Sensors and Actuators B: Chemical 169 (2012) 106–112.
  • C. R. Bondy, S. J. Loeb, Amide-based receptors for anions, Coordination Chemistry Reviews 240 (1-2) (2003) 77–99.
  • S. Rasheed, M. Ahmed, M. Faisal, M.M. Naseer, isatin-3-thiosemicarbazone as chromogenic sensor for the selective detection of fluoride anion, Heterocyclic Communications 26 (1) (2020) 123–129.
  • S. M. Basheer, A. C. Willis, R. J. Pace, A. Sreekanth, Spectroscopic and TD-DFT studies on the turn-off fluorescent chemosensor based on anthraldehyde N(4) cyclohexyl thiosemicarbazone for the selective recognition of fluoride and copper ions, Polyhedron 109 (2016) 7–18.
  • V. Raju, R. S. Kumar, S. K. A. Kumar, G. Madhu, S. Bothra, S. K. Sahoo, A ninhydrin–thiosemicarbazone based highly selective and sensitive chromogenic sensor for $Hg^{2+}$ and $F^{−}$ ions, Journal of Chemical Sciences 132 (89) (2020) 1–11.
  • S. Mathan Kumar, K. Dhahagani, J. Rajesh, K. Anitha, G. Chakkaravarthi, N. Kanakachalam, M. Marappan, G. Rajagopal, Synthesis, structural analysis and cytotoxic effect of copper(II)-thiosemicarbazone complexes having heterocyclic bases: A selective naked eye sensor for $F^{−}$ and $CN^{−}$, Polyhedron 85 (2015) 830–840.
  • R. Bhaskar, S. Sarveswari, Colorimetric sensor for real-time detection of cyanide ion in water and food samples, Inorganic Chemistry Communications 102 (2019) 83-89.
Year 2023, Volume: 12 Issue: 2, 108 - 117, 31.08.2023
https://doi.org/10.54187/jnrs.1338019

Abstract

References

  • P. D. Beer, P. A. Gale, Anion recognition and sensing: The state of the art and future perspectives, Angewandte Chemie International Edition 40 (3) (2001) 486–516.
  • W. S. Sessler, J. L. Gale, P. A. Cho, Anion receptor chemistry, Royal Society of Chemistry: Cambridge, UK, 2006.
  • A. I. Ismail, H. Hasson, Fluoride supplements, dental caries and fluorosis, The Journal of the American Dental Association 139 (11) (2008) 1457–1468.
  • J. A. Weatherall, Pharmacology of Fluorides,: In Handbook of Experimental Pharmacology XX/2, Springer‐Verlag, Berlin, 1969, Part 2, pp. 141–172.
  • S. Bose, V. Ramesh, J. W. Locasale, Acetate metabolism in physiology, cancer, and beyond, Trends in Cell Biology 29 (9) (2019) 695–703.
  • K. Kritmetapak, R. Kumar, Phosphate as a signaling molecule, Calcified Tissue International 108 (1) (2021) 16–31.
  • E. Jaszczak, Ż. Polkowska, S. Narkowicz, J. Namieśnik, Cyanides in the environment-analysis problems and challenges, Environmental Science and Pollution Research 24 (19) (2017) 15929–15948.
  • N. Kuyucak, A. Akcil, Cyanide and removal options from effluents in gold mining and metallurgical processes, Minerals Engineering 50–51 (2013) 13–29.
  • L. Chen, S. N. Berry, X. Wu, E. N. W. Howe, P. A. Gale, Advances in anion receptor chemistry, Chemistry 6 (1) (2020) 61–141.
  • M. Wenzel, J. R. Hiscock, P. A. Gale, Anion receptor chemistry: Highlights from 2010, Chemical Society Reviews 41 (1) (2012) 480–520.
  • J. Krämer, R. Kang, L. M. Grimm, L. De Cola, P. Picchetti, F. Biedermann, Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids, Chemical Reviews 122 (3) (2022) 3459–3636.
  • E. A. Kataev, C. Müller, G. V. Kolesnikov, V. N. Khrustalev, Guanidinium-based artificial receptors for binding orthophosphate in aqueous solution, European Journal of Organic Chemistry 2014 (13) (2014) 2747–2753.
  • Z. Dong, G. Gao, Recognition and sensing of anions through synergistic effects using simple benzimidazolium-urea receptors, Chinese Science Bulletin 57 (2012) 1266–1274.
  • F. Aydin, N. Tunoglu, D. Aykac, Synthesis of two novel aroyl thioureas and their use as anion binding receptors, Asian Journal of Chemistry 25 (5) (2013) 2455–2458.
  • F. Aydin, E. Dagci, N,N′-Bis-(4-nitrophenylcarbamothioyl)phthalamide, Molbank 2013 (4) (2013) M809.
  • I. Basaran, M. Emami Khansari, A. Pramanik, B. M. Wong, M. A. Hossain, Binding and selectivity of dihydrogen phosphate by H-bond donors and acceptors in a tripodal-based thiourea receptor, Tetrahedron Letters 56 (1) (2015) 115–118.
  • Y. H. Qiao, H. Lin, H. K. Lin, A novel colorimetric sensor for anions recognition based on disubstituted phenylhydrazone, Journal of Inclusion Phenomena and Macrocyclic Chemistry 59 (2007) 211–215.
  • S. Rattanopas, P. Piyanuch, K. Wisansin, A. Charoenpanich, J. Sirirak, W. Phutdhawong, N. Wanichacheva, Indole-based fluorescent sensors for selective sensing of $Fe^{2+}$ and $Fe^{3+}$ in aqueous buffer systems and their applications in living cells, Journal of Photochemistry and Photobiology A: Chemistry 377 (2019) 138–148.
  • S. Mondal, A. K. Bhanja, D. Ojha, T. K. Mondal, D. Chattopadhyay, C. Sinha, Fluorescence sensing and intracellular imaging of $Al^{3+}$ ions by using naphthalene based sulfonamide chemosensor: structure, computation and biological studies, RSC Advances 5 (90) (2015) 73626–73638.
  • J. Parikh, K. Bhatt, K. Modi, N. Patel, A. Desai, S. Kumar, B. Mohan, A versatile enrichment of functionalized calixarene as a facile sensor for amino acids, Luminescence 37 (3) (2022) 370–390.
  • H. M. Junaid, M. Batool, F. W. Harun, M. S. Akhter, N. Shabbir, Naked eye chemosensing of anions by Schiff bases, Critical Reviews in Analytical Chemistry 52 (3) (2022) 463–480.
  • O. Özbek, C. Berkel, Sensor properties of thiosemicarbazones in different analyical methods, Polyhedron, 238 (2023) Article Number 116426 16 pages.
  • T. K. Ghorpade, M. Patri, S. P. Mishra, Highly sensitive colorimetric and fluorometric anion sensors based on mono and di-calix[4]pyrrole substituted diketopyrrolopyrroles, Sensors and Actuators B: Chemical 225 (2016) 428–435.
  • R. C. R. Gonçalves, M. L. Boland, S. P. G. Costa, M. M. M. Raposo, Anion dual mode fluoro-chromogenic chemosensor based on a BODIPY core, Engineering Proceedings 27 (1) (2022) 6 pages.
  • Y. M. Hijji, B. Barare, Y. Zhang, Lawsone (2-hydroxy-1,4-naphthoquinone) as a sensitive cyanide and acetate sensor, Sensors and Actuators B: Chemical 169 (2012) 106–112.
  • C. R. Bondy, S. J. Loeb, Amide-based receptors for anions, Coordination Chemistry Reviews 240 (1-2) (2003) 77–99.
  • S. Rasheed, M. Ahmed, M. Faisal, M.M. Naseer, isatin-3-thiosemicarbazone as chromogenic sensor for the selective detection of fluoride anion, Heterocyclic Communications 26 (1) (2020) 123–129.
  • S. M. Basheer, A. C. Willis, R. J. Pace, A. Sreekanth, Spectroscopic and TD-DFT studies on the turn-off fluorescent chemosensor based on anthraldehyde N(4) cyclohexyl thiosemicarbazone for the selective recognition of fluoride and copper ions, Polyhedron 109 (2016) 7–18.
  • V. Raju, R. S. Kumar, S. K. A. Kumar, G. Madhu, S. Bothra, S. K. Sahoo, A ninhydrin–thiosemicarbazone based highly selective and sensitive chromogenic sensor for $Hg^{2+}$ and $F^{−}$ ions, Journal of Chemical Sciences 132 (89) (2020) 1–11.
  • S. Mathan Kumar, K. Dhahagani, J. Rajesh, K. Anitha, G. Chakkaravarthi, N. Kanakachalam, M. Marappan, G. Rajagopal, Synthesis, structural analysis and cytotoxic effect of copper(II)-thiosemicarbazone complexes having heterocyclic bases: A selective naked eye sensor for $F^{−}$ and $CN^{−}$, Polyhedron 85 (2015) 830–840.
  • R. Bhaskar, S. Sarveswari, Colorimetric sensor for real-time detection of cyanide ion in water and food samples, Inorganic Chemistry Communications 102 (2019) 83-89.
There are 31 citations in total.

Details

Primary Language English
Subjects Organic Chemical Synthesis
Journal Section Articles
Authors

Fatma Aydın 0000-0002-7219-6407

Publication Date August 31, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Aydın, F. (2023). A new colorimetric sensor based on semithiocarbazone for some anions: 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-N-phenylhydrazine-1-carbothioamide. Journal of New Results in Science, 12(2), 108-117. https://doi.org/10.54187/jnrs.1338019
AMA Aydın F. A new colorimetric sensor based on semithiocarbazone for some anions: 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-N-phenylhydrazine-1-carbothioamide. JNRS. August 2023;12(2):108-117. doi:10.54187/jnrs.1338019
Chicago Aydın, Fatma. “A New Colorimetric Sensor Based on Semithiocarbazone for Some Anions: 2-(1,3-Dioxo-1,3-Dihydro-2H-Inden-2-Ylidene)-N-Phenylhydrazine-1-Carbothioamide”. Journal of New Results in Science 12, no. 2 (August 2023): 108-17. https://doi.org/10.54187/jnrs.1338019.
EndNote Aydın F (August 1, 2023) A new colorimetric sensor based on semithiocarbazone for some anions: 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-N-phenylhydrazine-1-carbothioamide. Journal of New Results in Science 12 2 108–117.
IEEE F. Aydın, “A new colorimetric sensor based on semithiocarbazone for some anions: 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-N-phenylhydrazine-1-carbothioamide”, JNRS, vol. 12, no. 2, pp. 108–117, 2023, doi: 10.54187/jnrs.1338019.
ISNAD Aydın, Fatma. “A New Colorimetric Sensor Based on Semithiocarbazone for Some Anions: 2-(1,3-Dioxo-1,3-Dihydro-2H-Inden-2-Ylidene)-N-Phenylhydrazine-1-Carbothioamide”. Journal of New Results in Science 12/2 (August 2023), 108-117. https://doi.org/10.54187/jnrs.1338019.
JAMA Aydın F. A new colorimetric sensor based on semithiocarbazone for some anions: 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-N-phenylhydrazine-1-carbothioamide. JNRS. 2023;12:108–117.
MLA Aydın, Fatma. “A New Colorimetric Sensor Based on Semithiocarbazone for Some Anions: 2-(1,3-Dioxo-1,3-Dihydro-2H-Inden-2-Ylidene)-N-Phenylhydrazine-1-Carbothioamide”. Journal of New Results in Science, vol. 12, no. 2, 2023, pp. 108-17, doi:10.54187/jnrs.1338019.
Vancouver Aydın F. A new colorimetric sensor based on semithiocarbazone for some anions: 2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)-N-phenylhydrazine-1-carbothioamide. JNRS. 2023;12(2):108-17.


EBSCO 30456

Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).