Research Article
BibTex RIS Cite

Pell Leonardo numbers and their matrix representations

Year 2024, Volume: 13 Issue: 2, 101 - 108, 31.08.2024
https://doi.org/10.54187/jnrs.1506171

Abstract

In this study, we investigate Pell numbers and Leonardo numbers and describe a new third-order number sequence entitled Pell Leonardo numbers. We then construct some identities, including the Binet formula, generating function, exponential generating function, Catalan, Cassini, and d’Ocagne’s identities for Pell Leonardo numbers and obtain a relation between Pell Leonardo and Pell numbers. In addition, we present some summation formulas of Pell Leonardo numbers based on Pell numbers. Finally, we create a matrix formula for Pell Leonardo numbers and obtain the determinant of the matrix.

Ethical Statement

No approval from the Board of Ethics is required.

References

  • M. Bicknell, A primer of the Pell sequence and related sequences, The Fibonacci Quarterly 13 (4) (1975) 345–349.
  • A. F. Horadam, Applications of modified Pell numbers to representations, Ulam Quarterly 3 (1) (1994) 34-53.
  • R. Melham, Sums involving Fibonacci and Pell numbers, Portugaliae Mathematica 56 (3) (1999) 309-318.
  • S. F. Santana, J. L. Díaz-Barrero, Some properties of sums involving Pell numbers, Missouri Journal of Mathematical Sciences 18 (1) (2006) 33-40.
  • Q. Mushtaq, U. Hayat, Pell numbers, Pell–Lucas numbers and modular group, In Algebra Colloquium 14 (1) (2007) 97-102.
  • A. Dasdemir, On the Pell, Pell-Lucas and modified Pell numbers by matrix method, Applied Mathematical Sciences 5 (64) (2011) 3173-3181.
  • S. Çelik, İ. Durukan, E. Özkan, New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers and Jacobsthal-Lucas numbers, Chaos, Solitons & Fractals 150 (2021), Article Number 111173 8 pages.
  • P. M. Catarino and A. Borges, On Leonardo numbers, Acta Mathematica Universitatis Comenianae 89 (1) (2019) 75-86.
  • A. G. Shannon, A note on generalized Leonardo numbers, Notes on Number Theory and Discrete Mathematics 25 (3) (2019) 97-101.
  • Y. Alp, E. G. Koçer, Some properties of Leonardo numbers, Konuralp Journal of Mathematics 9 (1) (2021) 183-189.
  • Y. Alp, E. G. Kocer, Hybrid Leonardo numbers, Chaos, Solitons & Fractals 150 (2021) Article Number 111128 5 pages.
  • K. Kuhapatanakul, J. Chobsorn, On the generalized Leonardo Numbers, Integers: Electronic Journal of Combinatorial Number Theory 22 (2022) Article Number A48 7 pages.
  • A. Karatas, On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics 28 (3) (2022) 458-465.
  • E. Tan, H. H. Leung, On Leonardo p-numbers, Integers: Electronic Journal of Combinatorial Number Theory 23 (2023) 1-11.
  • Y. Soykan, Generalized Horadam-Leonardo numbers and polynomials, Asian Journal of Advanced Research and Reports 17 (8) (2023) 128-169.
Year 2024, Volume: 13 Issue: 2, 101 - 108, 31.08.2024
https://doi.org/10.54187/jnrs.1506171

Abstract

References

  • M. Bicknell, A primer of the Pell sequence and related sequences, The Fibonacci Quarterly 13 (4) (1975) 345–349.
  • A. F. Horadam, Applications of modified Pell numbers to representations, Ulam Quarterly 3 (1) (1994) 34-53.
  • R. Melham, Sums involving Fibonacci and Pell numbers, Portugaliae Mathematica 56 (3) (1999) 309-318.
  • S. F. Santana, J. L. Díaz-Barrero, Some properties of sums involving Pell numbers, Missouri Journal of Mathematical Sciences 18 (1) (2006) 33-40.
  • Q. Mushtaq, U. Hayat, Pell numbers, Pell–Lucas numbers and modular group, In Algebra Colloquium 14 (1) (2007) 97-102.
  • A. Dasdemir, On the Pell, Pell-Lucas and modified Pell numbers by matrix method, Applied Mathematical Sciences 5 (64) (2011) 3173-3181.
  • S. Çelik, İ. Durukan, E. Özkan, New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers and Jacobsthal-Lucas numbers, Chaos, Solitons & Fractals 150 (2021), Article Number 111173 8 pages.
  • P. M. Catarino and A. Borges, On Leonardo numbers, Acta Mathematica Universitatis Comenianae 89 (1) (2019) 75-86.
  • A. G. Shannon, A note on generalized Leonardo numbers, Notes on Number Theory and Discrete Mathematics 25 (3) (2019) 97-101.
  • Y. Alp, E. G. Koçer, Some properties of Leonardo numbers, Konuralp Journal of Mathematics 9 (1) (2021) 183-189.
  • Y. Alp, E. G. Kocer, Hybrid Leonardo numbers, Chaos, Solitons & Fractals 150 (2021) Article Number 111128 5 pages.
  • K. Kuhapatanakul, J. Chobsorn, On the generalized Leonardo Numbers, Integers: Electronic Journal of Combinatorial Number Theory 22 (2022) Article Number A48 7 pages.
  • A. Karatas, On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics 28 (3) (2022) 458-465.
  • E. Tan, H. H. Leung, On Leonardo p-numbers, Integers: Electronic Journal of Combinatorial Number Theory 23 (2023) 1-11.
  • Y. Soykan, Generalized Horadam-Leonardo numbers and polynomials, Asian Journal of Advanced Research and Reports 17 (8) (2023) 128-169.
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Çağla Çelemoğlu 0000-0003-0572-8132

Early Pub Date August 30, 2024
Publication Date August 31, 2024
Submission Date June 27, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Çelemoğlu, Ç. (2024). Pell Leonardo numbers and their matrix representations. Journal of New Results in Science, 13(2), 101-108. https://doi.org/10.54187/jnrs.1506171
AMA Çelemoğlu Ç. Pell Leonardo numbers and their matrix representations. JNRS. August 2024;13(2):101-108. doi:10.54187/jnrs.1506171
Chicago Çelemoğlu, Çağla. “Pell Leonardo Numbers and Their Matrix Representations”. Journal of New Results in Science 13, no. 2 (August 2024): 101-8. https://doi.org/10.54187/jnrs.1506171.
EndNote Çelemoğlu Ç (August 1, 2024) Pell Leonardo numbers and their matrix representations. Journal of New Results in Science 13 2 101–108.
IEEE Ç. Çelemoğlu, “Pell Leonardo numbers and their matrix representations”, JNRS, vol. 13, no. 2, pp. 101–108, 2024, doi: 10.54187/jnrs.1506171.
ISNAD Çelemoğlu, Çağla. “Pell Leonardo Numbers and Their Matrix Representations”. Journal of New Results in Science 13/2 (August 2024), 101-108. https://doi.org/10.54187/jnrs.1506171.
JAMA Çelemoğlu Ç. Pell Leonardo numbers and their matrix representations. JNRS. 2024;13:101–108.
MLA Çelemoğlu, Çağla. “Pell Leonardo Numbers and Their Matrix Representations”. Journal of New Results in Science, vol. 13, no. 2, 2024, pp. 101-8, doi:10.54187/jnrs.1506171.
Vancouver Çelemoğlu Ç. Pell Leonardo numbers and their matrix representations. JNRS. 2024;13(2):101-8.


TR Dizin 31688

EBSCO30456


Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).