Research Article
BibTex RIS Cite

An Extension of Maddox’s Paranormed Sequence Spaces with Narayana Numbers

Year 2025, Volume: 14 Issue: 2, 138 - 151, 31.08.2025
https://doi.org/10.54187/jnrs.1671958

Abstract

This study focuses on constructing an extended version of Maddox’s paranormed sequence spaces, denoted by $c_0(N, p)$, $c(N, p)$, $\ell_\infty(N, p)$, and $\ell(N, p)$. The study aims to define and investigate the characteristics of these sequence spaces, along with their paranormed extensions. In particular, it develops a theoretical framework for Narayana sequence spaces, establishing their topological, algebraic, and matrix transformation properties. The Schauder basis for these spaces is introduced, laying the foundation for further functional analysis. The research also examines the $alpha$-, $\beta$-, and $\gamma$- duals of these spaces and investigates the conditions under which matrix transformations preserve their structural properties. The findings highlight the equivalences between these spaces and classical sequence spaces such as $\ell_1$, $c$, and $\ell_\infty$.

References

  • J. Allouche, T. Johnson, Narayana’s cows and delayed morphisms, Journ´ees d’Informatique Musicale (1996) hal-02986050.
  • A. N. Singh, On the use of series in Hindu mathematics, Osiris 1 (1936) 606–628.
  • G. Bilgici, The generalized order-k Narayana’s cows numbers, Mathematica Slovaca 66 (4) (2016) 795–802.
  • C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Advances in Applied Clifford Algebras 23 (3) (2013) 673–688.
  • T. Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, in: Annales Mathematicae et Informaticae 49 (2018) 75–84.
  • J. L. Ram´ırez, V. F. Sirvent, A note on the k-Narayana sequence, Annales mathematicae et informaticae 45 (2015) 91–105.
  • R. Zatorsky, T. Goy, Parapermanents of triangular matrices and some general theorems on number sequences, Journal of Integer Sequences 19 (2) (2016) 16.2.2.
  • Y. Soykan, On generalized Narayana numbers, International Journal of Advances in Applied Mathematics and Mechanics 7 (3) (2020) 43–56.
  • H. Bilgin Ellidokuzoğlu, On some new normed Narayana sequence spaces, Journal of New Theory 46 (2024) 40–50.
  • I. Maddox, Paranormed sequence spaces generated by infinite matrices, Mathematical Proceedings of the Cambridge Philosophical Society 64 (2) (1968) 335–340.
  • S. Simons, The sequence spaces ℓ(pv) and m(pv), Proceedings of the London Mathematical Society s3-15 (3) (1965) 422–436.
  • H. Nakano, Modulared sequence spaces, Proceedings of the Japan Academy 27 (9) (1951) 508–512.
  • I. Maddox, Some properties of paranormed sequence spaces, Journal of the London Mathematical Society s2-1 (1) (1969) 316–322.
  • I. Maddox, Some analogues of Knopp’s core theorem, International Journal of Mathematics and Mathematical Sciences 2 (4) (1979) 605–614.
  • Z.U. Ahmad, Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publications de l’Institut Mathématique 42 (56) (1987) 57–61.
  • M. İlkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Science and Engineering Journal 9 (2) (2019) 277–282.
  • M. C. Dağli, T. Yaying, Some new paranormed sequence spaces derived by regular Tribonacci matrix, The Journal of Analysis 31 (1) (2023) 109–127.
  • P. Zengin Alp, A new paranormed sequence space defined by Catalan conservative matrix, Mathematical Methods in the Applied Sciences 44 (9) (2021) 7651–7658.
  • M. C. Dağlı, On the paranormed sequence space arising from Catalan-Motzkin matrix, Advances in Operator Theory 8 (2) (2023) 33.
  • E. Savaş, On new paranormed sequence spaces., Palestine Journal of Mathematics 12 (1) (2023) 300–305.
  • T. Yaying, On the paranormed Nörlund difference sequence space of fractional order and geometric properties, Mathematica Slovaca 71 (1) (2021) 155–170.
  • F. Başar, M. Yeşilkayagil, A survey for paranormed sequence spaces generated by infinite matrices, Twms Journal Of Pure And Applied Mathematics 10 (1) (2019) 3–38.
  • M. Candan, A. Günes, Paranormed sequence space of non-absolute type founded using generalized difference matrix, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 85 (2) (2015) 269–276.
  • M. Candan, A new sequence space isomorphic to the space ℓ(p) and compact operators, Journal of Mathematical and Computational Science 4 (2) (2014) 306–334.
  • F. Gökçe, M. A. Sarıgöl, Generalization of the space ℓ(p) derived by absolute Euler summability and matrix operators, Journal of Inequalities and Applications 2018 (2018) 133.
  • T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular tribonacci matrix, Mathematica Slovaca 70 (3) (2020) 697–706.
  • T. Yaying, M. İlkhan, On sequence spaces defined by the domain of tribonacci matrix in c′′ and c, Korean Journal of Mathematics 29 (1) (2021) 25–40.
  • T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac Journal of Mathematics 46 (2) (2022) 175–191.
  • T. Yaying, A study of novel telephone sequence spaces and some geometric properties, Journal of Inequalities and Applications 2024 (2024) 141.
  • T. Yaying, F. Başar, A study on some paranormed sequence spaces due to Lambda-Pascal matrix, Acta Scientiarum Mathematicarum 91 (2025) 161–180.
  • S. Erdem, S. Demiriz, H.B. Ellidokuzoğlu, Paranormed Motzkin sequence spaces, Dera Natung Government College Research Journal 9 (1) (2024) 36–51.
  • M. Karakaş, M.C. Dağlı, A New Paranormed Sequence Space Defined by Regular Bell Matrix, Dera Natung Government College Research Journal 8 (1) (2023) 30–45.
  • E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, Journal of Inequalities and Applications 2013 (2013) 38.
  • M. Candan, E. E. Kara, A study of topological and geometrical characteristics of new Banach sequence spaces, Gulf Journal of Mathematics 3 (4) (2015) 67–84.
  • E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra 64 (11) (2016) 2208–2223.
  • M. Karakaş, A. M. Karakaş, New Banach sequence spaces that is defined by the aid of Lucas numbers, Iğdır University Journal of the Institute of Science and Technology 7 (4) (2017) 103–111.
  • M. Karakaş, A. M. Karakaş, A study on Lucas difference sequence spaces ℓp(Eˆ(r, s)) and ℓ∞(Eˆ(r, s)), Maejo International Journal of Science and Technology 12 (01) (2018) 70–78.
  • T. Yaying, B. Hazarika, S. A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-European Journal of Mathematics 14 (06) (2021) 2150095.
  • M. İ. Kara, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, Journal of Mathematical Analysis and Applications 498 (1) (2021) 124925.
  • M. Karakaş, On the sequence spaces involving Bell numbers, Linear and Multilinear Algebra 71 (14) (2022) 2298–2309.
  • M. C. Dağli, A new almost convergent sequence space defined by Schröder matrix, Linear and Multilinear Algebra 71(11) (2023) 1863-1874.
  • A. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti del Circolo Matematico di Palermo Series II 52 (1990) 177–191.
  • K.-G. Grosseerdmann, Matrix transformations between the sequence spaces of Maddox, Journal of Mathematical Analysis and Applications 180 (1) (1993) 223–238.
There are 43 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Hacer Bilgin Ellidokuzoğlu 0000-0003-1658-201X

Serkan Demiriz 0000-0002-4662-6020

Publication Date August 31, 2025
Submission Date April 8, 2025
Acceptance Date July 23, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Bilgin Ellidokuzoğlu, H., & Demiriz, S. (2025). An Extension of Maddox’s Paranormed Sequence Spaces with Narayana Numbers. Journal of New Results in Science, 14(2), 138-151. https://doi.org/10.54187/jnrs.1671958
AMA Bilgin Ellidokuzoğlu H, Demiriz S. An Extension of Maddox’s Paranormed Sequence Spaces with Narayana Numbers. JNRS. August 2025;14(2):138-151. doi:10.54187/jnrs.1671958
Chicago Bilgin Ellidokuzoğlu, Hacer, and Serkan Demiriz. “An Extension of Maddox’s Paranormed Sequence Spaces With Narayana Numbers”. Journal of New Results in Science 14, no. 2 (August 2025): 138-51. https://doi.org/10.54187/jnrs.1671958.
EndNote Bilgin Ellidokuzoğlu H, Demiriz S (August 1, 2025) An Extension of Maddox’s Paranormed Sequence Spaces with Narayana Numbers. Journal of New Results in Science 14 2 138–151.
IEEE H. Bilgin Ellidokuzoğlu and S. Demiriz, “An Extension of Maddox’s Paranormed Sequence Spaces with Narayana Numbers”, JNRS, vol. 14, no. 2, pp. 138–151, 2025, doi: 10.54187/jnrs.1671958.
ISNAD Bilgin Ellidokuzoğlu, Hacer - Demiriz, Serkan. “An Extension of Maddox’s Paranormed Sequence Spaces With Narayana Numbers”. Journal of New Results in Science 14/2 (August2025), 138-151. https://doi.org/10.54187/jnrs.1671958.
JAMA Bilgin Ellidokuzoğlu H, Demiriz S. An Extension of Maddox’s Paranormed Sequence Spaces with Narayana Numbers. JNRS. 2025;14:138–151.
MLA Bilgin Ellidokuzoğlu, Hacer and Serkan Demiriz. “An Extension of Maddox’s Paranormed Sequence Spaces With Narayana Numbers”. Journal of New Results in Science, vol. 14, no. 2, 2025, pp. 138-51, doi:10.54187/jnrs.1671958.
Vancouver Bilgin Ellidokuzoğlu H, Demiriz S. An Extension of Maddox’s Paranormed Sequence Spaces with Narayana Numbers. JNRS. 2025;14(2):138-51.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).