Research Article
BibTex RIS Cite

In Silico Analyzing 37 kDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-blocking Multi-epitope Vector Vaccine Against Aedes Species (A. aegypti and A. albopictus) Transmitting Several Arboviral Pathogens

Year 2025, Volume: 14 Issue: 2, 152 - 165, 31.08.2025
https://doi.org/10.54187/jnrs.1675428

Abstract

Aedes mosquitoes, primarily Aedes aegypti and Aedes albopictus, are significant vectors of arboviral diseases, including dengue, chikungunya, Zika, and yellow fever. With expanding geographical distributions due to climate change and urbanization, these species increasingly threaten public health. Current vector control strategies rely heavily on insecticides, which face challenges due to increased resistance. An alternative approach involves developing transmission-blocking vaccines targeting mosquito vector proteins rather than individual pathogens. This study performed an in-silico analysis of the 37 kDa salivary protein D7, a highly conserved and abundantly secreted protein in Aedes saliva, to identify potential vaccine and diagnostic epitopes. Through sequence comparison, structural modeling, and immunoinformatics approaches, B-cell, MHC-I, and MHC-II epitopes with high antigenicity, non-allergenicity, and non-toxicity were predicted. Selected epitopes were incorporated into multi-epitope vaccine constructs against A. aegypti and A. albopictus vectors, which were subsequently modeled, validated, and simulated to induce IgM, IgG, and IFN-g. The present study's findings suggest that the 37 kDa salivary protein D7 is a promising candidate for a transmission-blocking vector vaccine targeting Aedes mosquitoes, offering a novel strategy for controlling mosquito-borne diseases. Further experimental validation is necessary to confirm the immunogenicity and protective potential of the identified epitopes.

References

  • A. Nebbak, L. Almeras, P. Parola, I. Bitam, Mosquito vectors (Diptera: Culicidae) and mosquito-borne diseases in North Africa, Insects 13 (10) (2022) 962.
  • S. Liu, X. Xia, E. Calvo, Z. H. Zhou, Native structure of mosquito salivary protein uncovers domains relevant to pathogen transmission, Nature Communications 14 (2023) 899.
  • E. Gavor, Y. K. Choong, Y. Liu, J. Pompon, E. E. Ooi, Y. K. Mok, H. Liu, R. M. Kini, J. Sivaraman, Identification of Aedes aegypti salivary gland proteins interacting with human immune receptor proteins, PLoS Neglected Tropical Diseases 16 (9) (2022) e0010743.
  • D. C. Rinker, R. J. Pitts, L. J. Zwiebel, Disease vectors in the era of next generation sequencing, Genome Biology 17 (1) (2016) 95.
  • C. H. Coelho, R. Rappuoli, P. J. Hotez, P. E. Duffy, Transmission-blocking vaccines for malaria: time to talk about vaccine introduction, Trends in Parasitology 35 (7) (2019) 483–486.
  • S. Buezo Montero, P. Gabrieli, A. Poinsignon, B. Z. H. Zamble, F. Lombardo, F. Remoue, B. Arcà, Human IgG responses to the Aedes albopictus 34k2 salivary protein: Analyses in Reunion Island and Bolivia confirm its suitability as marker of host exposure to the tiger mosquito, Parasites and Vectors 15 (1) (2022) 260.
  • B. R. Egid, M. Coulibaly, S. K. Dadzie, B. Kamgang, P. J. McCall, L. Sedda, K. H. Toe, A. L. Wilson, Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control, Current Research in Parasitology and Vector-Borne Diseases 2 (2022) 100074.
  • L. Braack, A. P. Gouveia de Almeida, A. J. Cornel, R. Swanepoel, C. De Jager, Mosquito-borne arboviruses of African origin: review of key viruses and vectors, Parasites and Vectors 11 (2018) 29.
  • S. J. Ryan, C. J. Carlson, E. A. Mordecai, L. R. Johnson, Global expansion and redistribution of Aedes-borne virus transmission risk with climate change, PLoS Neglected Tropical Diseases 13 (3) (2019) e0007213.
  • N. Vasilakis, J. Cardosa, K. A. Hanley, E. C. Holmes, S. C. Weaver, Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health, Nature Reviews Microbiology 9 (7) (2011) 532–541.
  • I. Martin-Martin, L. B. Smith, A. C. Chagas, A. Sá-Nunes, G. Shrivastava, P. C. Valenzuela-Leon, E. Calvo, Aedes albopictus D7 salivary protein prevents host hemostasis and inflammation, Biomolecules 10 (10) (2020) 1372.
  • Z. Li, C. Ji, J. Cheng, M. Åbrink, T. Shen, X. Kuang, Z. Shang, J. Wu, Aedes albopictus salivary proteins adenosine deaminase and 34k2 interact with human mast cell specific proteases tryptase and chymase, Bioengineered 13 (5) (2022) 13752–13766.
  • M. K. McCracken, R. C. Christofferson, B. J. Grasperge, E. Calvo, D. M. Chisenhall, C. N. Mores, Aedes aegypti salivary protein “aegyptin” co-inoculation modulates dengue virus infection in the vertebrate host, Virology 468-470 (2014) 133–139.
  • R. Oktarianti, K. Senjarini, T. Hayano, F. Fatchiyah, Aulanni’am, Proteomic analysis of immunogenic proteins from salivary glands of Aedes aegypti, Journal of Infection and Public Health 8 (6) (2015) 575–582.
  • W. R. Shaw, F. Catteruccia, Vector biology meets disease control: using basic research to fight vector-borne diseases, Nature Microbiology 4 (1) (2019) 20–34.
  • S. Erkunt Alak, A. E. Köseoğlu, Ç. Kandemir, T. Taşkın, S. Demir, M. Döşkaya, C. Ün, H. Can, High frequency of knockdown resistance mutations in the para gene of cat flea (Ctenocephalides felis) samples collected from goats, Parasitology Research 119 (7) (2020) 2067–2073.
  • J. G. van Oosterwijk, S. K. Wikel, Resistance to ticks and the path to anti-tick and transmission blocking vaccines, Vaccines 9 (7) (2021) 725.
  • O. Merino, P. Alberdi, J. M. Pérez de la Lastra, J. de la Fuente, Tick vaccines and the control of tick-borne pathogens, Frontiers in Cellular and Infection Microbiology 3 (2013) 30.
  • G. Niu, A. C. Franca, G. Zhang, W. Roobsoong, W. Nguitragool, X. Wang, J. Prachumsri, N. S. Butler, J. Li, The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen, Journal of Biological Chemistry 292 (28) (2017) 11960–11969.
  • J. E. Manning, T. Cantaert, Time to micromanage the pathogen-host-vector interface: considerations for vaccine development, Vaccines 7 (1) (2019) 10.
  • F. Sievers, D. G. Higgins, Clustal omega, Current Protocols in Bioinformatics 48 (1) (2014) 3.13.1-3.13.16.
  • K. Tamura, G. Stecher, S. Kumar, MEGA11: molecular evolutionary genetics analysis version 11, Molecular Biology and Evolution 38 (7) (2021) 3022–3027.
  • J. Yang, Y. Zhang, I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research 43 (W1) (2015) W174–W181.
  • E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, UCSF Chimera—a visualization system for exploratory research and analysis, Journal of Computational Chemistry 25 (13) (2004) 1605–1612.
  • J. Ko, H. Park, L. Heo, C. Seok, GalaxyWEB server for protein structure prediction and refinement, Nucleic Acids Research 40 (W1) (2012) W294–W297.
  • C. Colovos, T. O. Yeates, Verification of protein structures: patterns of nonbonded atomic interactions, Protein Science 2 (9) (1993) 1511–1519.
  • M. Wiederstein, M. J. Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Research 35 (W2) (2007) W407–W410.
  • J. Garnier, J. F. Gibrat, B. Robson, GOR method for predicting protein secondary structure from amino acid sequence, Methods in Enzymology 266 (1996) 540–553.
  • E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, A. Bairoch, Protein identification and analysis tools on the ExPASy server, in: J. M. Walker (Eds.) The Proteomics Protocols Handbook, Springer Protocols Handbooks, Humana Press Inc., Totowa, NJ, 2005, pp. 571-607.
  • I. A. Doytchinova, D. R. Flower, VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines, BMC Bioinformatics 8 (2007) 4.
  • K. C. Chou, H. B. Shen, A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0, PLoS One 5 (4) (2010) e9931.
  • A. Krogh, B. Larsson, G. Von Heijne, E. L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, Journal of Molecular Biology 305 (3) (2001) 567–580.
  • K. Frank, M. J. Sippl, High-performance signal peptide prediction based on sequence alignment techniques, Bioinformatics 24 (19) (2008) 2172–2176.
  • S. Saha, G. P. S. Raghava, AlgPred: prediction of allergenic proteins and mapping of IgE epitopes, Nucleic Acids Research 34 (W2) (2006) W202–W209.
  • S. Saha, G. P. S. Raghava, BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties, in: G. Nicosia, V. Cutello, P. J. Bentley, J. Timmis (Eds.), International Conference on Artificial Immune Systems, ICARIS 2004, Lecture Notes in Computer Science, Vol. 3239, Springer, Berlin, 2004, pp. 197–204.
  • R. Vita, S. Mahajan, J. A. Overton, S. K. Dhanda, S. Martini, J. R. Cantrell, D. K. Wheeler, A. Sette, B. Peters, The immune epitope database (IEDB): 2018 update, Nucleic Acids Research 47 (D1) (2019) D339–D343.
  • S. Gupta, P. Kapoor, K. Chaudhary, A. Gautam, R. Kumar, Open Source Drug Discovery Consortium, G. P. Raghava, In silico approach for predicting toxicity of peptides and proteins, PLoS One 8 (9) (2013) e73957.
  • I. Dimitrov, I. Bangov, D. R. Flower, I. Doytchinova, AllerTOP v. 2—a server for in silico prediction of allergens, Journal of Molecular Modeling 20 (6) (2014) 2278.
  • H. Can, S. Erkunt Alak, A. E. Köseoğlu, M. Döşkaya, C. Ün, Do Toxoplasma gondii apicoplast proteins have antigenic potential? An in silico study, Computational Biology and Chemistry 84 (2020) 107158.
  • M. Ali, R. K. Pandey, N. Khatoon, A. Narula, A. Mishra, V. K. Prajapati, Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection, Scientific Reports 7 (1) (2017) 9232.
  • P. Kalita, A. K. Padhi, K. Y. Zhang, T. Tripathi, Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2, Microbial Pathogenesis 145 (2020) 104236.
  • A. E. Köseoğlu, F. Özgül, E. N. Işıksal, Y. Şeflekçi, D. Tülümen, B. Özgültekin, G. Deniz Köseoğlu, S. Özyiğit, M. Ihlamur, Y. Ekenoğlu Merdan, In silico discovery of diagnostic/vaccine candidate antigenic epitopes and a multi-epitope peptide vaccine (NaeVac) design for the brain-eating amoeba Naegleria fowleri causing human meningitis, Gene 902 (2024) 148192.
  • N. Rapin, O. Lund, M. Bernaschi, F. Castiglione, Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system, PLoS One 5 (4) (2010) e9862.
  • A. E. Köseoğlu, GitHub (2025), https://github.com/drahmetefe/aedes/blob/main/dot_plot_for_top_antigenic_epitopes, Accessed 06 Mar 2025.
  • B. Londono-Renteria, A. Troupin, T. M. Colpitts, Arbovirosis and potential transmission blocking vaccines, Parasites and Vectors 9 (1) (2016) 516.
  • S. Arumugam, P. Varamballi, In-silico design of envelope based multi-epitope vaccine candidate against Kyasanur forest disease virus, Scientific Reports 11 (1) (2021) 17118.
  • S. Aiman, A. Ahmad, A. A. Khan, A. M. Alanazi, A. Samad, S. L. Ali, C. Li, Z. Ren, A. Khan, S. Khattak, Vaccinomics-based next-generation multi-epitope chimeric vaccine models prediction against Leishmania tropica-a hierarchical subtractive proteomics and immunoinformatics approach, Frontiers in Immunology 14 (2023) 1259612.
  • A. E. Köseoğlu, H. Can, M. Güvendi, S. Erkunt Alak, A. Değirmenci Döşkaya, M. Karakavuk, M. Döşkaya, C. Ün, Molecular characterization of Anaplasma ovis Msp4 protein in strains isolated from ticks in Turkey: A multi-epitope synthetic vaccine antigen design against Anaplasma ovis using immunoinformatic tools, Biologicals 85 (2024) 101749.
  • O. Saha, A. Razzak, N. Sarker, N. Rahman, A. bin Zahid, A. Sultana, T. A. Shishir, N. M. Bahadur, M. M. Rahaman, F. Hossen, M. R. Amin, M. S. Akter, In silico design and evaluation of multi-epitope dengue virus vaccines: A promising approach to combat global dengue burden, Discover Applied Sciences 6 (2024) 210.
  • R. A. Shey, S. M. Ghogomu, K. K. Esoh, N. D. Nebangwa, C. M. Shintouo, N. F. Nongley, B. F. Asa, F. N. Ngale, L. Vanhamme, J. Souopgui, In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases, Scientific Reports 9 (1) (2019) 4409.
  • H. Can, A. E. Köseoğlu, S. Erkunt Alak, M. Güvendi, M. Döşkaya, M. Karakavuk, A. Y. Gürüz, C. Ün, In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19, Scientific Reports 10 (1) (2020) 22387.
There are 51 citations in total.

Details

Primary Language English
Subjects Bioinformatics and Computational Biology (Other), Entomology, Parasitology
Journal Section Articles
Authors

Ahmet Köseoğlu 0000-0002-3505-4397

Buminhan Özgültekin 0000-0002-5193-7149

Yusuf Şeflekçi 0000-0002-5990-9628

Publication Date August 31, 2025
Submission Date April 13, 2025
Acceptance Date August 4, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Köseoğlu, A., Özgültekin, B., & Şeflekçi, Y. (2025). In Silico Analyzing 37 kDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-blocking Multi-epitope Vector Vaccine Against Aedes Species (A. aegypti and A. albopictus) Transmitting Several Arboviral Pathogens. Journal of New Results in Science, 14(2), 152-165. https://doi.org/10.54187/jnrs.1675428
AMA Köseoğlu A, Özgültekin B, Şeflekçi Y. In Silico Analyzing 37 kDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-blocking Multi-epitope Vector Vaccine Against Aedes Species (A. aegypti and A. albopictus) Transmitting Several Arboviral Pathogens. JNRS. August 2025;14(2):152-165. doi:10.54187/jnrs.1675428
Chicago Köseoğlu, Ahmet, Buminhan Özgültekin, and Yusuf Şeflekçi. “In Silico Analyzing 37 KDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-Blocking Multi-Epitope Vector Vaccine Against Aedes Species (A. Aegypti and A. Albopictus) Transmitting Several Arboviral Pathogens”. Journal of New Results in Science 14, no. 2 (August 2025): 152-65. https://doi.org/10.54187/jnrs.1675428.
EndNote Köseoğlu A, Özgültekin B, Şeflekçi Y (August 1, 2025) In Silico Analyzing 37 kDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-blocking Multi-epitope Vector Vaccine Against Aedes Species (A. aegypti and A. albopictus) Transmitting Several Arboviral Pathogens. Journal of New Results in Science 14 2 152–165.
IEEE A. Köseoğlu, B. Özgültekin, and Y. Şeflekçi, “In Silico Analyzing 37 kDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-blocking Multi-epitope Vector Vaccine Against Aedes Species (A. aegypti and A. albopictus) Transmitting Several Arboviral Pathogens”, JNRS, vol. 14, no. 2, pp. 152–165, 2025, doi: 10.54187/jnrs.1675428.
ISNAD Köseoğlu, Ahmet et al. “In Silico Analyzing 37 KDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-Blocking Multi-Epitope Vector Vaccine Against Aedes Species (A. Aegypti and A. Albopictus) Transmitting Several Arboviral Pathogens”. Journal of New Results in Science 14/2 (August2025), 152-165. https://doi.org/10.54187/jnrs.1675428.
JAMA Köseoğlu A, Özgültekin B, Şeflekçi Y. In Silico Analyzing 37 kDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-blocking Multi-epitope Vector Vaccine Against Aedes Species (A. aegypti and A. albopictus) Transmitting Several Arboviral Pathogens. JNRS. 2025;14:152–165.
MLA Köseoğlu, Ahmet et al. “In Silico Analyzing 37 KDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-Blocking Multi-Epitope Vector Vaccine Against Aedes Species (A. Aegypti and A. Albopictus) Transmitting Several Arboviral Pathogens”. Journal of New Results in Science, vol. 14, no. 2, 2025, pp. 152-65, doi:10.54187/jnrs.1675428.
Vancouver Köseoğlu A, Özgültekin B, Şeflekçi Y. In Silico Analyzing 37 kDa Salivary Protein D7 and Discovering Vaccine Candidate and Diagnostic Epitopes to Develop a Transmission-blocking Multi-epitope Vector Vaccine Against Aedes Species (A. aegypti and A. albopictus) Transmitting Several Arboviral Pathogens. JNRS. 2025;14(2):152-65.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).