NUMERICAL INVESTIGATION OF HVAC SYSTEMS OF A NAVAL SHIP COMPARTMENT: NATURAL VENTILATION AND AIR-CONDITIONING
Year 2023,
, 77 - 100, 31.05.2023
Alpay Acar
,
Murat Uryan
,
Ali Doğrul
,
Asım Sinan Karakurt
,
Doç. Dr. Cenk Çelik
Abstract
HVAC system design and optimization of the ventilation and air-conditioning of indoor environments are crucial for human comfort. Especially in recent years, due to the Covid pandemic, the importance of this hot topic is noticed. This study aims to focus on the HVAC performance of a dorm compartment onboard a naval surface ship since the ship environment is a good example of indoor air ventilation problem. The HVAC performance was investigated using a RANS solver. The numerical analyses were conducted for different scenarios and the results were finally discussed in terms of HVAC system location, air temperature, air intake and outlet conditions. As a conclusion, the current HVAC system design was found insufficient and alternative solutions were proposed in order to improve indoor air quality and thermal comfort.
References
- Arpino, F., Grossi, G., Cortellessa, G., Mikszewski, A., Morawska, L., Buonanno, G., & Stabile, L. (2022). Risk of SARS-CoV-2 in a car cabin assessed through 3D CFD simulations. Indoor Air, 32(3), e13012. https://doi.org/10.1111/ina.13012
- Atthajariyakul, S., & Leephakpreeda, T. (2004). Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage. Energy and Buildings, 36(7), 720–733. https://doi.org/10.1016/j.enbuild.2004.01.017
- Bergman, T. L., Lavine, A. S., Incropera, F. P., & DeWitt, D. P. (2011). Fundamentals of Heat and Mass Transfer (7th edition). John Wiley & Sons.
- Bilir, A. Ç., Doğrul, A., & Vardar, N. (2022). An Extensive Investigation of Flow Conditioners Inside A Fi-Fi Monitor. Brodogradnja : Teorija i Praksa Brodogradnje i Pomorske Tehnike, 73(4), 161–177. https://doi.org/10.21278/brod73408
- Bode, F., Meslem, A., Patrascu, C., & Nastase, I. (2020). Flow and wall shear rate analysis for a cruciform jet impacting on a plate at short distance. Progress in Computational Fluid Dynamics, an International Journal, 20(3), 169–185. https://doi.org/10.1504/PCFD.2020.107276
- Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., & Raad, P. E. (2008). Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, 130(7). https://doi.org/10.1115/1.2960953
- Chang, T.-B., Lin, Y.-S., & Hsu, Y.-T. (2023). CFD simulations of effects of recirculation mode and fresh air mode on vehicle cabin indoor air quality. Atmospheric Environment, 293, 119473. https://doi.org/10.1016/j.atmosenv.2022.119473
- Chen, Z., Xin, J., & Liu, P. (2020). Air quality and thermal comfort analysis of kitchen environment with CFD simulation and experimental calibration. Building and Environment, 172, 106691. https://doi.org/10.1016/j.buildenv.2020.106691
- Croitoru, C., Nastase, I., Bode, F., & Sandu, M. (2022). Assessment of virtual thermal manikins for thermal comfort numerical studies. Verification and validation. Science and Technology for the Built Environment, 28(1), 21–41. https://doi.org/10.1080/23744731.2021.1916379
- Fraňa, K., Müller, M., & Zhang, J. S. (2014). The effect of the window temperature on the thermal comfort in a room heated by a floor convector. 13th International Conference on Indoor Air Quality and Climate, Indoor Air.
- Jin, R., Hang, J., Liu, S., Wei, J., Liu, Y., Xie, J., & Sandberg, M. (2016). Numerical investigation of wind-driven natural ventilation performance in a multi-storey hospital by coupling indoor and outdoor airflow. Indoor and Built Environment, 25(8), 1226–1247. https://doi.org/10.1177/1420326X15595689
- Kato, S. (2018). Review of airflow and transport analysis in building using CFD and network model. JAPAN ARCHITECTURAL REVIEW, 1(3), 299–309. https://doi.org/10.1002/2475-8876.12051
- Lau, S. S. Y., Zhang, J., & Tao, Y. (2019). A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus. Building and Environment, 148, 579–599. https://doi.org/10.1016/j.buildenv.2018.11.032
- Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K., Kan, H., Fu, Q., & Lan, K. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582(7813), Article 7813. https://doi.org/10.1038/s41586-020-2271-3
- Natarajan, G., Zaid, M., Konka, H., Srinivasan, R., Ramanathan, S. S., Ahmed, T., & Chowdhury, H. (2022). Modeling of air distribution inside a shipping container plant factory using computational fluid dynamics (CFD). AIP Conference Proceedings, 2681(1), 020091. https://doi.org/10.1063/5.0117095
- Roache, P. J. (1998). Verification of Codes and Calculations. AIAA Journal, 36(5), 696–702. https://doi.org/10.2514/2.457
- Sarı, S., Doğrul, A., & Bayraktar, S. (2021). On The Computational Aerodynamics of a Generic Frigate. 397–403.
- Sezen, S., Delen, C., Dogrul, A., & Atlar, M. (2021). An investigation of scale effects on the self-propulsion characteristics of a submarine. Applied Ocean Research, 113, 102728. https://doi.org/10.1016/j.apor.2021.102728
- Shu, S., Yu, N., Wang, Y., & Zhu, Y. (2015). Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California. Atmospheric Environment, 122, 628–635. https://doi.org/10.1016/j.atmosenv.2015.10.030
- Tai, V. C., Kai-Seun, J. W., Mathew, P. R., Moey, L. K., Cheng, X., & Baglee, D. (2022). Investigation of varying louver angles and positions on cross ventilation in a generic isolated building using CFD simulation. Journal of Wind Engineering and Industrial Aerodynamics, 229, 105172. https://doi.org/10.1016/j.jweia.2022.105172
- Tien, P. W., & Calautit, J. K. (2019). Numerical analysis of the wind and thermal comfort in courtyards “skycourts” in high rise buildings. Journal of Building Engineering, 24, 100735. https://doi.org/10.1016/j.jobe.2019.100735
- Tong, Y., Lin, K., Hu, Q., Niu, X., Peng, J., Huo, D., & Yan, W. (2020). Field measurements on thermal stratification and cooling potential of natural ventilation for large space buildings. International Journal of Ventilation, 19(1), 49–62. https://doi.org/10.1080/14733315.2018.1544730
- Ullrich, S., Buder, R., Boughanmi, N., Friebe, C., & Wagner, C. (2020). Numerical Study of the Airflow Distribution in a Passenger Car Cabin Validated with PIV. In A. Dillmann, G. Heller, E. Krämer, C. Wagner, C. Tropea, & S. Jakirlić (Eds.), New Results in Numerical and Experimental Fluid Mechanics XII (pp. 457–467). Springer International Publishing. https://doi.org/10.1007/978-3-030-25253-3_44
- Wang, L., Kumar, P., Makhatha, M. E., & Jagota, V. (2022). Numerical simulation of air distribution for monitoring the central air conditioning in large atrium. International Journal of System Assurance Engineering and Management, 13(1), 340–352. https://doi.org/10.1007/s13198-021-01420-4
- Wilcox, D. C. (2006). Turbulence Modeling for CFD (3rd edition). DCW Industries.
- Wilcox, D. C. (2008). Formulation of the k-w Turbulence Model Revisited. AIAA Journal, 46(11), 2823–2838. https://doi.org/10.2514/1.36541
- Xing, T., & Stern, F. (2010). Factors of Safety for Richardson Extrapolation. Journal of Fluids Engineering, 132(6). https://doi.org/10.1115/1.4001771
- Yang, L., Ye, M., & he, B.-J. (2014). CFD simulation research on residential indoor air quality. Science of The Total Environment, 472, 1137–1144. https://doi.org/10.1016/j.scitotenv.2013.11.118
- Zhang, Z.-Y., Yin, W., Wang, T.-W., & O’Donovan, A. (2022). Effect of cross-ventilation channel in classrooms with interior corridor estimated by computational fluid dynamics. Indoor and Built Environment, 31(4), 1047–1065. https://doi.org/10.1177/1420326X211054341
BİR SAVAŞ GEMİSİ KOMPARTIMANINDA HVAC SİSTEMLERİNİN SAYISAL İNCELENMESİ: DOĞAL HAVALANDIRMA VE İKLİMLENDİRME
Year 2023,
, 77 - 100, 31.05.2023
Alpay Acar
,
Murat Uryan
,
Ali Doğrul
,
Asım Sinan Karakurt
,
Doç. Dr. Cenk Çelik
Abstract
Kapalı mekanlarda HVAC sistem tasarımı ve havalandırma ile iklimlendirmenin optimizasyonu insan komforu için önemlidir. Özellikle geçtiğimiz birkaç yılda yaşanan Kovid pandemisi nedeniyle bu güncel konunun önemi fark edilmiştir. Bu çalışma bir savaş gemisi içerisinde bulunan ve yatakhane olarak kullanılan bir kompartımanın HVAC performansı üzerine odaklanmaktadır. Savaş gemisi kompartımanı, kapalı mekan havalandırma problemi için iyi bir örnek teşkil etmektedir. HVAC performans analizi bir RANS çözücü kullanılarak yapılmıştır. Sayısal analizler farklı senaryolar için gerçekleştirilmiştir ve sonuçlar HVAC sisteminin yeri, hava sıcaklığı, hava giriş ve çıkış koşulları açısından tartışılmıştır. Sonuç olarak mevcut HVAC tasarımının yetersiz olduğu tespit edilmiş ve kapalı mekandaki hava kalitesinive ısıl konforu iyileştirmek amacıyla alternatif çözümler önerilmiştir.
References
- Arpino, F., Grossi, G., Cortellessa, G., Mikszewski, A., Morawska, L., Buonanno, G., & Stabile, L. (2022). Risk of SARS-CoV-2 in a car cabin assessed through 3D CFD simulations. Indoor Air, 32(3), e13012. https://doi.org/10.1111/ina.13012
- Atthajariyakul, S., & Leephakpreeda, T. (2004). Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage. Energy and Buildings, 36(7), 720–733. https://doi.org/10.1016/j.enbuild.2004.01.017
- Bergman, T. L., Lavine, A. S., Incropera, F. P., & DeWitt, D. P. (2011). Fundamentals of Heat and Mass Transfer (7th edition). John Wiley & Sons.
- Bilir, A. Ç., Doğrul, A., & Vardar, N. (2022). An Extensive Investigation of Flow Conditioners Inside A Fi-Fi Monitor. Brodogradnja : Teorija i Praksa Brodogradnje i Pomorske Tehnike, 73(4), 161–177. https://doi.org/10.21278/brod73408
- Bode, F., Meslem, A., Patrascu, C., & Nastase, I. (2020). Flow and wall shear rate analysis for a cruciform jet impacting on a plate at short distance. Progress in Computational Fluid Dynamics, an International Journal, 20(3), 169–185. https://doi.org/10.1504/PCFD.2020.107276
- Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., & Raad, P. E. (2008). Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, 130(7). https://doi.org/10.1115/1.2960953
- Chang, T.-B., Lin, Y.-S., & Hsu, Y.-T. (2023). CFD simulations of effects of recirculation mode and fresh air mode on vehicle cabin indoor air quality. Atmospheric Environment, 293, 119473. https://doi.org/10.1016/j.atmosenv.2022.119473
- Chen, Z., Xin, J., & Liu, P. (2020). Air quality and thermal comfort analysis of kitchen environment with CFD simulation and experimental calibration. Building and Environment, 172, 106691. https://doi.org/10.1016/j.buildenv.2020.106691
- Croitoru, C., Nastase, I., Bode, F., & Sandu, M. (2022). Assessment of virtual thermal manikins for thermal comfort numerical studies. Verification and validation. Science and Technology for the Built Environment, 28(1), 21–41. https://doi.org/10.1080/23744731.2021.1916379
- Fraňa, K., Müller, M., & Zhang, J. S. (2014). The effect of the window temperature on the thermal comfort in a room heated by a floor convector. 13th International Conference on Indoor Air Quality and Climate, Indoor Air.
- Jin, R., Hang, J., Liu, S., Wei, J., Liu, Y., Xie, J., & Sandberg, M. (2016). Numerical investigation of wind-driven natural ventilation performance in a multi-storey hospital by coupling indoor and outdoor airflow. Indoor and Built Environment, 25(8), 1226–1247. https://doi.org/10.1177/1420326X15595689
- Kato, S. (2018). Review of airflow and transport analysis in building using CFD and network model. JAPAN ARCHITECTURAL REVIEW, 1(3), 299–309. https://doi.org/10.1002/2475-8876.12051
- Lau, S. S. Y., Zhang, J., & Tao, Y. (2019). A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus. Building and Environment, 148, 579–599. https://doi.org/10.1016/j.buildenv.2018.11.032
- Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K., Kan, H., Fu, Q., & Lan, K. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582(7813), Article 7813. https://doi.org/10.1038/s41586-020-2271-3
- Natarajan, G., Zaid, M., Konka, H., Srinivasan, R., Ramanathan, S. S., Ahmed, T., & Chowdhury, H. (2022). Modeling of air distribution inside a shipping container plant factory using computational fluid dynamics (CFD). AIP Conference Proceedings, 2681(1), 020091. https://doi.org/10.1063/5.0117095
- Roache, P. J. (1998). Verification of Codes and Calculations. AIAA Journal, 36(5), 696–702. https://doi.org/10.2514/2.457
- Sarı, S., Doğrul, A., & Bayraktar, S. (2021). On The Computational Aerodynamics of a Generic Frigate. 397–403.
- Sezen, S., Delen, C., Dogrul, A., & Atlar, M. (2021). An investigation of scale effects on the self-propulsion characteristics of a submarine. Applied Ocean Research, 113, 102728. https://doi.org/10.1016/j.apor.2021.102728
- Shu, S., Yu, N., Wang, Y., & Zhu, Y. (2015). Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California. Atmospheric Environment, 122, 628–635. https://doi.org/10.1016/j.atmosenv.2015.10.030
- Tai, V. C., Kai-Seun, J. W., Mathew, P. R., Moey, L. K., Cheng, X., & Baglee, D. (2022). Investigation of varying louver angles and positions on cross ventilation in a generic isolated building using CFD simulation. Journal of Wind Engineering and Industrial Aerodynamics, 229, 105172. https://doi.org/10.1016/j.jweia.2022.105172
- Tien, P. W., & Calautit, J. K. (2019). Numerical analysis of the wind and thermal comfort in courtyards “skycourts” in high rise buildings. Journal of Building Engineering, 24, 100735. https://doi.org/10.1016/j.jobe.2019.100735
- Tong, Y., Lin, K., Hu, Q., Niu, X., Peng, J., Huo, D., & Yan, W. (2020). Field measurements on thermal stratification and cooling potential of natural ventilation for large space buildings. International Journal of Ventilation, 19(1), 49–62. https://doi.org/10.1080/14733315.2018.1544730
- Ullrich, S., Buder, R., Boughanmi, N., Friebe, C., & Wagner, C. (2020). Numerical Study of the Airflow Distribution in a Passenger Car Cabin Validated with PIV. In A. Dillmann, G. Heller, E. Krämer, C. Wagner, C. Tropea, & S. Jakirlić (Eds.), New Results in Numerical and Experimental Fluid Mechanics XII (pp. 457–467). Springer International Publishing. https://doi.org/10.1007/978-3-030-25253-3_44
- Wang, L., Kumar, P., Makhatha, M. E., & Jagota, V. (2022). Numerical simulation of air distribution for monitoring the central air conditioning in large atrium. International Journal of System Assurance Engineering and Management, 13(1), 340–352. https://doi.org/10.1007/s13198-021-01420-4
- Wilcox, D. C. (2006). Turbulence Modeling for CFD (3rd edition). DCW Industries.
- Wilcox, D. C. (2008). Formulation of the k-w Turbulence Model Revisited. AIAA Journal, 46(11), 2823–2838. https://doi.org/10.2514/1.36541
- Xing, T., & Stern, F. (2010). Factors of Safety for Richardson Extrapolation. Journal of Fluids Engineering, 132(6). https://doi.org/10.1115/1.4001771
- Yang, L., Ye, M., & he, B.-J. (2014). CFD simulation research on residential indoor air quality. Science of The Total Environment, 472, 1137–1144. https://doi.org/10.1016/j.scitotenv.2013.11.118
- Zhang, Z.-Y., Yin, W., Wang, T.-W., & O’Donovan, A. (2022). Effect of cross-ventilation channel in classrooms with interior corridor estimated by computational fluid dynamics. Indoor and Built Environment, 31(4), 1047–1065. https://doi.org/10.1177/1420326X211054341