Year 2024,
, 21 - 41, 28.06.2024
İlkay Özer Erselcan
Abstract
Eksenel simetrik dalga enerjisi dönüştürücülerinin Karadeniz’de iki bölgede gösterecekleri performans, yıllık enerji üretim miktarının ve enerjinin maliyetinin hesaplanmasıyla değerlendirilmiştir. Dalga enerjisi dönüştürücülerinin şamandıralarının ek su kütlesi, hidrodinamik sönüm katsayısı ve şamandıralara etki eden dalga kuvvetleri potansiyel akım teorisine dayalı 3 boyutlu bir panel yöntemi ile hesaplanmıştır. Şamandıraların yapmış olduğu salınım hareketlerinin hesabı ise farklı hassasiyet seviyelerindeki Runge-Kutta yöntemleri kullanılarak zamanın bağlısı olarak yapılmış ve yıllık enerji üretimi de bahse konu bölgelerde görülen deniz durumlarının bir yılda görülme süreleri ele alınarak yapılmıştır. Her bir dalga enerjisi dönüştürücüsü tarafından üretilen enerjinin birim maliyeti, sistemin ömrü boyunca karşılaşılacak tüm giderlerin maliyetinin göz önüne alınmasıyla hesaplanmıştır. Hesaplama sonuçları Berkeley Kama şeklindeki şamandıralara sahip dalga enerjisi dönüştürücülerinin Sinop ve Hopa’da en yüksek miktarda enerjiyi üretebileceklerini göstermektedir. Sinop ve Hopa’da en maliyet etkin dalga enerjisi dönüştürücüleri ise sırasıyla koni ve Berkeley Kama şeklinde şamandıralara sahip olan dalga enerjisi dönüştürücüleridir.
References
- Astariz, S., & Iglesias, G. (2015). The economics of wave energy: A review. Renewable Ans Sustainable Energy Reviews, 45, 397-408. https://doi.org/http://dx.doi.org/10.1016/j.rser.2015.01.061
- Astariz, S., & Iglesias, G. (2016). Wave energy vs. other energy sources: A reassessment of the economics. International Journal of Green Energy, 13(7), 747-755. https://doi.org/http://dx.doi.org/10.1080/15435075.2014.963587
- Babarit, A. (2013). On the park effect in arrays of oscillating wave energy converters. Renewable Energy, 58, 68–78.
- Bosserelle, C., Reddy, S. K., & Krüger, J. (2015). Waves and Coasts in the Pacific: Cost Analysis of Wave Energy in the Pacific.
- Bruzzone, D., & Grasso, A. (2007). Nonlinear time domain analysis of vertical ship motions. Archives of Civil and Mechanical Engineering, VII(4), 27–37.
- Castro-Santos, L., Garcia, G. P., Estanqueiro, A., & Justino, P. A. P. S. (2015). The Levelized Cost of Energy (LCOE) of wave energy using GIS based analysis: The case study of Portugal. Electrical Power and Energy Systems, 65, 21–25. https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2014.09.022
- Castro-Santos, L., Silva, D., Bento, A. R., Salvaçao, N., & Soares, C. G. (2018). Economic Feasibility of Wave Farms in Portugal. Energies, 11(3149). https://doi.org/doi:10.3390/en11113149
- Chang, G., Jones, C. A., Roberts, J. D., & Neary, V. S. (2018a). A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable Energy, 127, 344–354. https://doi.org/https://doi.org/10.1016/j.renene.2018.04.071
- Chang, G., Jones, C. A., Roberts, J. D., & Neary, V. S. (2018b). A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable Energy, 127, 344–354. https://doi.org/https://doi.org/10.1016/j.renene.2018.04.071
- Erselcan, İ. Ö., & Kükner, A. (2017). A numerical analysis of several wave energy converter arrays deployed in the Black Sea. Ocean Engineering, 131, 68–79.
- Erselcan, İ. Ö., & Kükner, A. (2020). A parametric optimization study towards the preliminary design of point absorber type wave energy converters suitable for the Turkish coasts of the Black Sea. Ocean Engineering, 218(July). https://doi.org/10.1016/j.oceaneng.2020.108275
- Fehlberg, E. (1974). Classical Seventh-, Sixth-, and Fifth-Order Runge-Kutta-Nyström Formulas with Stepsize Control for General Second-Order Differential Equations.
- Giglio, E., Petracca, E., Paduano, B., Moscoloni, C., Giorgi, G., & Sirigu, S. A. (2023). Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottum-Uo Approach. Sustainability, 15(6756). https://doi.org/https://doi.org/10.3390/su15086756
- Guo, C., Sheng, W., De Silva, D. G., & Aggidis, G. (2023). A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model. Energies, 16(2144), 1-30.
- Newman, J. N. (1989). Marine Hydrodynamics (6th ed.). The MIT Press.
- O’Connor, M., Lewis, T., & Dalton, G. (2013). Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe. Renewable Energy, 50, 889–900. https://doi.org/http://dx.doi.org/10.1016/j.renene.2012.08.009
- Piscopo, V., Benassai, G., Della Morte, R., & Scamardella, A. (2017). Towards a cost-based design of heaving point absorbers. International Journal of Marine Energy, 18, 15–29.
- SI Ocean. (2013a). Ocean Energy: Cost of Energy and Cost Reduction Opportunities.
SI Ocean. (2013b). Ocean Energy: Cost of Energy and Cost Reduction Opportunities. https://oceanenergy-sweden.se/wp-content/uploads/2018/03/130501-si-ocean-cost-of-energy-report.pdf
- Teillant, B., Costello, R., Weber, J., & Ringwood, J. (2012). Productivity and economic assessment of wave energy projects through operational simulations. Renewable Energy, 48, 220–230. https://doi.org/doi:10.1016/j.renene.2012.05.001
- Tetu, A., & Chozas, J. F. (2021). A Proposed Guidance for the Economic Assessment ofWave Energy Converters at Early Development Stages. Energies, 14(4699). https://doi.org/https://doi.org/10.3390/en14154699
- Wehausen, J. V., & Laitone, E. V. (2002). Surface Waves Online. Regents of the University of California.
- Yılmaz, N. (2007). Spectral Characteristics of Wind Waves in the Eastern Black Sea. Middle East Technical University.
- Yılmaz, N., & Özhan, E. (2014). Characteristics of the frequency spectra of wind-waves in Eastern Black Sea. Ocean Dynamics, 64, 1419–1429.
AN EVALUATION OF WAVE ENERGY GENERATION AND COST OF ENERGY IN THE BLACK SEA
Year 2024,
, 21 - 41, 28.06.2024
İlkay Özer Erselcan
Abstract
The performance of several axisymmetric wave energy converters is studied by evaluating the yearly energy capture and the expense of energy in two sites in the Black Sea. The added mass, hydrodynamic damping, and wave forces exerted on the floats are calculated by a 3D panel method based on potential flow theory. The oscillations of the floats are calculated in the time domain by employing a family of Runge-Kutta Methods at various levels of accuracy and the yearly energy generated is calculated by taking into account the occurrence of sea states in a year. The expense of energy captured by each wave energy converter is evaluated by calculating the Levelized Cost of Energy. The results show that the WECs with Berkeley Wedge-Shaped floats generate the maximum amount of energy in Sinop and Hopa. The most economical wave energy converters are those with a cone float and with a Berkeley Wedge-Shaped float in Sinop and Hopa, respectively.
Ethical Statement
An ethical committee approval and/or legal/special permission has not been required within the scope of this study.
Supporting Institution
TÜBİTAK
Thanks
The author is grateful for the support of The Scientific and Technological Research Council of Türkiye (TUBITAK) under project no. 121M489.
References
- Astariz, S., & Iglesias, G. (2015). The economics of wave energy: A review. Renewable Ans Sustainable Energy Reviews, 45, 397-408. https://doi.org/http://dx.doi.org/10.1016/j.rser.2015.01.061
- Astariz, S., & Iglesias, G. (2016). Wave energy vs. other energy sources: A reassessment of the economics. International Journal of Green Energy, 13(7), 747-755. https://doi.org/http://dx.doi.org/10.1080/15435075.2014.963587
- Babarit, A. (2013). On the park effect in arrays of oscillating wave energy converters. Renewable Energy, 58, 68–78.
- Bosserelle, C., Reddy, S. K., & Krüger, J. (2015). Waves and Coasts in the Pacific: Cost Analysis of Wave Energy in the Pacific.
- Bruzzone, D., & Grasso, A. (2007). Nonlinear time domain analysis of vertical ship motions. Archives of Civil and Mechanical Engineering, VII(4), 27–37.
- Castro-Santos, L., Garcia, G. P., Estanqueiro, A., & Justino, P. A. P. S. (2015). The Levelized Cost of Energy (LCOE) of wave energy using GIS based analysis: The case study of Portugal. Electrical Power and Energy Systems, 65, 21–25. https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2014.09.022
- Castro-Santos, L., Silva, D., Bento, A. R., Salvaçao, N., & Soares, C. G. (2018). Economic Feasibility of Wave Farms in Portugal. Energies, 11(3149). https://doi.org/doi:10.3390/en11113149
- Chang, G., Jones, C. A., Roberts, J. D., & Neary, V. S. (2018a). A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable Energy, 127, 344–354. https://doi.org/https://doi.org/10.1016/j.renene.2018.04.071
- Chang, G., Jones, C. A., Roberts, J. D., & Neary, V. S. (2018b). A comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projects. Renewable Energy, 127, 344–354. https://doi.org/https://doi.org/10.1016/j.renene.2018.04.071
- Erselcan, İ. Ö., & Kükner, A. (2017). A numerical analysis of several wave energy converter arrays deployed in the Black Sea. Ocean Engineering, 131, 68–79.
- Erselcan, İ. Ö., & Kükner, A. (2020). A parametric optimization study towards the preliminary design of point absorber type wave energy converters suitable for the Turkish coasts of the Black Sea. Ocean Engineering, 218(July). https://doi.org/10.1016/j.oceaneng.2020.108275
- Fehlberg, E. (1974). Classical Seventh-, Sixth-, and Fifth-Order Runge-Kutta-Nyström Formulas with Stepsize Control for General Second-Order Differential Equations.
- Giglio, E., Petracca, E., Paduano, B., Moscoloni, C., Giorgi, G., & Sirigu, S. A. (2023). Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottum-Uo Approach. Sustainability, 15(6756). https://doi.org/https://doi.org/10.3390/su15086756
- Guo, C., Sheng, W., De Silva, D. G., & Aggidis, G. (2023). A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model. Energies, 16(2144), 1-30.
- Newman, J. N. (1989). Marine Hydrodynamics (6th ed.). The MIT Press.
- O’Connor, M., Lewis, T., & Dalton, G. (2013). Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe. Renewable Energy, 50, 889–900. https://doi.org/http://dx.doi.org/10.1016/j.renene.2012.08.009
- Piscopo, V., Benassai, G., Della Morte, R., & Scamardella, A. (2017). Towards a cost-based design of heaving point absorbers. International Journal of Marine Energy, 18, 15–29.
- SI Ocean. (2013a). Ocean Energy: Cost of Energy and Cost Reduction Opportunities.
SI Ocean. (2013b). Ocean Energy: Cost of Energy and Cost Reduction Opportunities. https://oceanenergy-sweden.se/wp-content/uploads/2018/03/130501-si-ocean-cost-of-energy-report.pdf
- Teillant, B., Costello, R., Weber, J., & Ringwood, J. (2012). Productivity and economic assessment of wave energy projects through operational simulations. Renewable Energy, 48, 220–230. https://doi.org/doi:10.1016/j.renene.2012.05.001
- Tetu, A., & Chozas, J. F. (2021). A Proposed Guidance for the Economic Assessment ofWave Energy Converters at Early Development Stages. Energies, 14(4699). https://doi.org/https://doi.org/10.3390/en14154699
- Wehausen, J. V., & Laitone, E. V. (2002). Surface Waves Online. Regents of the University of California.
- Yılmaz, N. (2007). Spectral Characteristics of Wind Waves in the Eastern Black Sea. Middle East Technical University.
- Yılmaz, N., & Özhan, E. (2014). Characteristics of the frequency spectra of wind-waves in Eastern Black Sea. Ocean Dynamics, 64, 1419–1429.