Research Article
PDF EndNote BibTex RIS Cite

AKILLI ULAŞIM SİSTEMLERİ İÇİN ENERJİ YÖNETİMİ MODELİ

Year 2019, Volume 15, Issue 2, 159 - 172, 29.11.2019

Abstract

Akıllı araçlar için enerji tasarruflu teknolojiler, toplam enerji tüketimini azalttığı için büyük öneme sahiptirler. Akıllı Ulaşım Sistemleri’nde, Yol Kenarı Baz İstasyonları toplam enerji tüketiminde en fazla etkiye sahiptirler. Yakın gelecekte, enerji maliyetinin de artması beklenmektedir. Bu kapsamda, Akıllı Ulaşım Sistemleri’nde bir enerji yönetim modeli önererek, Yol Kenarı Baz İstasyonlarının enerji etkinliği araştırılmaktadır. Enerji verimliliği, maksimum sayıda Yol Kenarı Baz İstasyonlarının kapatılması ile sağlanabilir, ancak önerilecek modelin servis kalitesini düşürmeden etkin bir şekilde yönetilmesi gerekmektedir. Bu kapsamda, Yol Kenarı Baz İstasyonlarının enerji tüketimini azaltmak için Yol Kenarı Baz İstasyonlarının kullanımını planlayan bir model geliştirilmesi amaçlanmıştır.

References

  • [1] Zorlu, S.K., Önaçan, M.B.K., Sulukan E. (2019). General Overview of Data Mining Applications on Electric Power Industry, in International Congress of Energy, Economy and Security, Istanbul, Turkey.
  • [2] Namal, S., Ahmad, I., Gurtov, Ylianttila, M. (2013). SDN Based Inter-Technology Load Balancing Leveraged by Flow Admission Control, in Proc. of IEEE Software Defined Networks for Future Networks and Services, Trento, Italy.
  • [3] Yu, B., Xu, C. (2009). Admission Control for Roadside Unit Access in Intelligent Transportation Systems, Quality of Service, in Proc. of the 17th IEEE International Workshop on Quality of Service, Charleston, SC.
  • [4] Hossain, E., Rasti, M., Tabassum, H., Abdelnasser A. (2014). Evolution Towards 5G Multi-tier Cellular Wireless Networks: An Interference Management Perspective, IEEE Wireless Communications Magazine, 21(3):118-127.
  • [5] Nam, W., Bai, D., Lee, J., Kang, I. (2014). Advanced Interference Management for 5G Cellular Networks, IEEE Communications Magazine, 52(5):52-60.
  • [6] Retrieved from http://www.esri.com/software/arcgis/arcgis-for- desktop.
  • [7] Isaaks, E. H. & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics, Oxford University Press.
  • [8] Retrieved from https://crawdad.cs.dartmouth.edu.

ENERGY MANAGEMENT MODEL FOR INTELLIGENT TRANSPORTATION SYSTEM

Year 2019, Volume 15, Issue 2, 159 - 172, 29.11.2019

Abstract

Energy saving technologies for smart vehicles have great importance because of decreasing total energy consumption. It is estimated that the cost of energy will increase in the near future. Here, Road Side Units (RSUs) are the dominant contributing components to the overall energy consumption in Intelligent Transportation Systems (ITS). This paper investigates the energy efficiency of RSUs by proposing an energy management model for ITS. Energy efficiency can be achieved if as many as possible RSUs switch off while maintaining an acceptable quality of service. The aim is to present a way to improve total energy efficiency by scheduling RSUs with a switching on/off model so that total energy consumption of RSUs can be managed. 

References

  • [1] Zorlu, S.K., Önaçan, M.B.K., Sulukan E. (2019). General Overview of Data Mining Applications on Electric Power Industry, in International Congress of Energy, Economy and Security, Istanbul, Turkey.
  • [2] Namal, S., Ahmad, I., Gurtov, Ylianttila, M. (2013). SDN Based Inter-Technology Load Balancing Leveraged by Flow Admission Control, in Proc. of IEEE Software Defined Networks for Future Networks and Services, Trento, Italy.
  • [3] Yu, B., Xu, C. (2009). Admission Control for Roadside Unit Access in Intelligent Transportation Systems, Quality of Service, in Proc. of the 17th IEEE International Workshop on Quality of Service, Charleston, SC.
  • [4] Hossain, E., Rasti, M., Tabassum, H., Abdelnasser A. (2014). Evolution Towards 5G Multi-tier Cellular Wireless Networks: An Interference Management Perspective, IEEE Wireless Communications Magazine, 21(3):118-127.
  • [5] Nam, W., Bai, D., Lee, J., Kang, I. (2014). Advanced Interference Management for 5G Cellular Networks, IEEE Communications Magazine, 52(5):52-60.
  • [6] Retrieved from http://www.esri.com/software/arcgis/arcgis-for- desktop.
  • [7] Isaaks, E. H. & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics, Oxford University Press.
  • [8] Retrieved from https://crawdad.cs.dartmouth.edu.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Elif BOZKAYA> (Primary Author)
NATIONAL DEFENSE UNIVERSITY, NAVAL ACADEMY
0000-0001-6960-2585
Türkiye

Publication Date November 29, 2019
Published in Issue Year 2019, Volume 15, Issue 2

Cite

APA Bozkaya, E. (2019). ENERGY MANAGEMENT MODEL FOR INTELLIGENT TRANSPORTATION SYSTEM . Journal of Naval Sciences and Engineering , JOURNAL OF NAVAL SCIENCES AND ENGINEERING , 159-172 . Retrieved from https://dergipark.org.tr/en/pub/jnse/issue/50382/622186