Research Article
PDF EndNote BibTex RIS Cite

TURBOFAN MOTOR İÇİN EKSENEL AKIŞLI KOMPRESÖR TASARIMI VE ANALİZİ

Year 2020, Volume 16, Issue 1, 1 - 24, 29.04.2020

Abstract

Turbofan motorları, yolcu uçaklarını veya savaş jet uçaklarını hareket ettirmek için nozülden gelen yüksek sıcaklık ve basınç gazlarını kullanarak itme kuvveti sağlamak için kullanılır. Turbofan motorları, yüksek mühendislik bilgisi ile üretilen eksenel fan, kompresör, yanma odası, türbin gibi karmaşık parçalardan oluşur. Bu nedenle, iyi tasarlanmış, analiz edilmiş ve üretilmiş olmalıdır. Bu çalışmada, bir savaş uçağı turbofan motorunun eksenel kompresörü AxStream yazılımı ile tasarlanmış ve analiz edilmiştir. Sonuçlar gerçek turbofan motor ölçüm değerleri ile karşılaştırılmış, ayrıca kompresör tasarım parametrelerini değerlendirmek için hesaplamalı akışkan dinamiği ve gerilme analizi yapılmıştır. Sonuçlar, tasarlanan kompresörün poliprotik verimliliğinin gerçek kompresörden % 2 daha yüksek olduğunu göstermiştir. Ayrıca, tasarlanan kompresörün çıkışında gerçek kompresör göre benzer basınç ve sıcaklık elde edilmiştir.

References

  • [1] Bathie, W.W., (1996). Fundamentals Of Gas Turbines, Second Edition, John Wiley&Sons Inc., Canada.
  • [2] Eyüp, Ö., (1997). Türbin Motorlarının Aerotermodinamiği ve Mekaniği Esaslar ve Uygulamalar, Birsen Yayın Evi, İstanbul.
  • [3] Fletcher, P. Philip, W.P., (2004). Gaz Turbine Performance, Second Edition, Blackwell Publishing company, Malden, MA, USA.
  • [4] Giampaolo, T., (2006). Gas Turbine Handbook: Principles and Practices, Third Edition, The Fairmont Press., USA.
  • [5] Arthur, G.J., (1994). Turbine Design and Application, NASA Scientific and Technical Informantion Program, Washington D.C., USA.
  • [6] Rama, G.S.R., Aijaz, K.A., (2003). Turbomachinery Design and Theory, Marcel Dekker Inc., USA.
  • [7] Theodero, G., (2001). Compressor Performance: Aerodynamics For The User, Second Edition, Elsevier Science & Technology Books, U.S.A.
  • [8] Dorfner, C., Hergt, A., Nicke, E., & Moenig, R. (2011). Advanced Nonaxisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator—Part I: Principal Cascade Design and Compressor Application. Journal of Turbomachinery, 133(2), 021026.
  • [9] Richard, H.T.C., (1981). Gas Turbine Engineering Applications, Cycles and Characteristics, The Macmillan Press LTD., London/United Kingdom.
  • [10] Horlock J.H. (2003). Advanced Gas Turbine Cycles, Elsevier Science LTD., Oxford, United Kingdom.
  • [11] Samad, A., Kim, K.-Y. (2008). Shape optimization of an axial compressor blade by multi-objective genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(6), 599–611.
  • [12] Yamada, K., Furukawa, M., Nakakido, S., Matsuoka, A., & Nakayama, K. (2015). Large-Scale DES Analysis of Unsteady Flow Field in a Multi-Stage Axial Flow Compressor at Off-Design Condition Using K Computer. Volume 2C: Turbomachinery.
  • [13] Moroz, L., Govorushchenko, Y., Pagur, P. (2006). A Uniform Approach to Conceptual Design of Axial Turbine / Compressor Flow Path, 3rd International Conference, The Future of Gas Turbine Technology, 1-11.
  • [14] Boyce, M.P., (2006). Gas Turbine Engineering Handbook, Third Edition, Oxford, UK.
  • [15] Ikeguchi, T., Matsuoka, A., Sakai, Y., Sakano, Y., & Yoshiura, K. (2012). Design and Development of a 14-Stage Axial Compressor for Industrial Gas Turbine. Volume 8: Turbomachinery, Parts A, B, and C.

DESING AND ANALYSIS OF AN AXIAL COMPRESSOR FOR A TURBOFAN ENGINE

Year 2020, Volume 16, Issue 1, 1 - 24, 29.04.2020

Abstract

Turbofan engines are used to provide thrust force by using the high temperature and pressure gases flow from the nozzle to move passenger planes or war jet planes. Turbofan engines consist of complicated parts such as axial fan, compressor, combustion chamber, turbine, which are manufactured with high engineering knowledge. Therefore, it needs to be well designed, analyzed and manufactured. In this study, an axial compressor of a warplane turbofan engine was designed and analyzed with AxStream software. Results were compared with real turbofan engine measured values, furthermore, computed flued dynamic and strain analysis were performed to evaluate compressor design parameters. Results showed that the polyprotic efficiency of the designed compressor was 2 % higher than the actual compressor. Furthermore, similar pressure and temperature were obtained at the outlet of the designed compressor. 

References

  • [1] Bathie, W.W., (1996). Fundamentals Of Gas Turbines, Second Edition, John Wiley&Sons Inc., Canada.
  • [2] Eyüp, Ö., (1997). Türbin Motorlarının Aerotermodinamiği ve Mekaniği Esaslar ve Uygulamalar, Birsen Yayın Evi, İstanbul.
  • [3] Fletcher, P. Philip, W.P., (2004). Gaz Turbine Performance, Second Edition, Blackwell Publishing company, Malden, MA, USA.
  • [4] Giampaolo, T., (2006). Gas Turbine Handbook: Principles and Practices, Third Edition, The Fairmont Press., USA.
  • [5] Arthur, G.J., (1994). Turbine Design and Application, NASA Scientific and Technical Informantion Program, Washington D.C., USA.
  • [6] Rama, G.S.R., Aijaz, K.A., (2003). Turbomachinery Design and Theory, Marcel Dekker Inc., USA.
  • [7] Theodero, G., (2001). Compressor Performance: Aerodynamics For The User, Second Edition, Elsevier Science & Technology Books, U.S.A.
  • [8] Dorfner, C., Hergt, A., Nicke, E., & Moenig, R. (2011). Advanced Nonaxisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator—Part I: Principal Cascade Design and Compressor Application. Journal of Turbomachinery, 133(2), 021026.
  • [9] Richard, H.T.C., (1981). Gas Turbine Engineering Applications, Cycles and Characteristics, The Macmillan Press LTD., London/United Kingdom.
  • [10] Horlock J.H. (2003). Advanced Gas Turbine Cycles, Elsevier Science LTD., Oxford, United Kingdom.
  • [11] Samad, A., Kim, K.-Y. (2008). Shape optimization of an axial compressor blade by multi-objective genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 222(6), 599–611.
  • [12] Yamada, K., Furukawa, M., Nakakido, S., Matsuoka, A., & Nakayama, K. (2015). Large-Scale DES Analysis of Unsteady Flow Field in a Multi-Stage Axial Flow Compressor at Off-Design Condition Using K Computer. Volume 2C: Turbomachinery.
  • [13] Moroz, L., Govorushchenko, Y., Pagur, P. (2006). A Uniform Approach to Conceptual Design of Axial Turbine / Compressor Flow Path, 3rd International Conference, The Future of Gas Turbine Technology, 1-11.
  • [14] Boyce, M.P., (2006). Gas Turbine Engineering Handbook, Third Edition, Oxford, UK.
  • [15] Ikeguchi, T., Matsuoka, A., Sakai, Y., Sakano, Y., & Yoshiura, K. (2012). Design and Development of a 14-Stage Axial Compressor for Industrial Gas Turbine. Volume 8: Turbomachinery, Parts A, B, and C.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Doğuş ÖZKAN> (Primary Author)
MSÜ Deniz Harp Okulu
0000-0002-3044-4310
Türkiye


Kadir BÜYÜKHAMURKAR>
DENİZ KUVVETLERİ KOMUTANLIĞI
0000-0001-8902-4604
Türkiye

Publication Date April 29, 2020
Published in Issue Year 2020, Volume 16, Issue 1

Cite

APA Özkan, D. & Büyükhamurkar, K. (2020). DESING AND ANALYSIS OF AN AXIAL COMPRESSOR FOR A TURBOFAN ENGINE . Journal of Naval Sciences and Engineering , JOURNAL OF NAVAL SCIENCES AND ENGINEERING [en] , 1-24 . Retrieved from https://dergipark.org.tr/en/pub/jnse/issue/54053/698900