Research Article
BibTex RIS Cite

Year 2025, Volume: 21 Issue: 2, 173 - 197
https://doi.org/10.56850/jnse.1693081

Abstract

References

  • Aksenov, A. A., Sandrock, C. E., Zhao, W., Sankaran, S., Schivo, M., Harper, R., Cardona, C. J., Xing, Z., & Davis, C. E. (2014). Cellular Scent of Influenza Virus Infection. ChemBioChem, 15(7), 1040–1048. https://doi.org/10.1002/cbic.201300695.
  • Al-Okby, M. F. R., Roddelkopf, T., Fleischer, H., & Thurow, K. (2022). Evaluating a Novel Gas Sensor for Ambient Monitoring in Automated Life Science Laboratories. Sensors, 22(21), 8161. https://doi.org/10.3390/s22218161.
  • Bosch Sensor Tec. (2021). BME 688 Development Kit.
  • Bosch Sensor Tec.GmbH. (2021). The BME688 is gas sensor with Artificial Intelligence (AI) and integrated high-linearity and high-accuracy pressure, humidity and temperature sensors. https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme688-ds000.pdf.
  • Botticini, S., Comini, E., Dello Iacono, S., Flammini, A., Gaioni, L., Galliani, A., Ghislotti, L., Lazzaroni, P., Re, V., Sisinni, E., Verzeroli, M., & Zappa, D. (2024). Index Air Quality Monitoring for Light and Active Mobility. Sensors, 24(10), 3170. https://doi.org/10.3390/s24103170. Dokic, K., Radisic, B., & Kukina, H. (2024). Application of Machine Learning Algorithms for Monitoring of Spoilage of Cow’s Milk Using the Cheap Gas Sensor. 2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–6. https://doi.org/10.1109/ECAI61503.2024.10607506.
  • Effah, F., Taiwo, B., Baines, D., Bailey, A., & Marczylo, T. (2022). In Vitro High-Throughput Toxicological Assessment of E-Cigarette Flavors in Human Bronchial Epithelial Cells and the role of TRPA1 in Cinnamon Flavor-Induced Toxicity.
  • Gao, Z., Lin, Q., He, Q., Liu, C., Cai, H., & Ni, H. (2024). Rapid Detection of Spoiled Apple Juice Using Electrical Impedance Spectroscopy and Data Augmentation-Based Machine Learning. Chiang Mai Journal of Science, 51(5), 1–13. https://doi.org/10.12982/CMJS.2024.071.
  • Garofalo, E., Taurino, L., Di Maio, L., Neitzert, H. C., & Incarnato, L. (2023). Assessment of Melt Compounding with Zeolites as an Effective Deodorization Strategy for Mixed Plastic Wastes and Comparison with Degassing. Polymers, 15(8). https://doi.org/10.3390/polym15081858.
  • González, V., Godoy, J., Arroyo, P., Meléndez, F., Díaz, F., López, Á., Suárez, J. I., & Lozano, J. (2024). Development of a Smartwatch with Gas and Environmental Sensors for Air Quality Monitoring. Sensors, 24(12), 3808. https://doi.org/10.3390/s24123808.
  • Kumar, A., O’Leary, C., Winkless, R., Thompson, M., Davies, H. L., Shaw, M., Andrews, S. J., Carslaw, N., & Dillon, T. J. (2025). Fingerprinting the emissions of volatile organic compounds emitted from the cooking of oils, herbs, and spices. Environmental Science: Processes & Impacts, 27(1), 244–261.
  • Lee, K., Cho, I., Kang, M., Jeong, J., Choi, M., Woo, K. Y., Yoon, K.-J., Cho, Y.-H., & Park, I. (2023). Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning. ACS Nano, 17(1), 539–551. https://doi.org/10.1021/acsnano.2c09314.
  • Leite, S., Costa, R., Carvalho, J., Sapage, T., Bessa, R., & Paiva, S. (2023). Embedded Intelligence of End Devices with MOS Sensors for CH4Detection. IEEE International Symposium on Industrial Electronics, 2023-June. https://doi.org/10.1109/ISIE51358.2023.10228140. Mahanti, N. K., Shivashankar, S., Chhetri, K. B., Kumar, A., Rao, B. B., Aravind, J., & Swami, D. V. (2024). Enhancing food authentication through E-nose and E-tongue technologies: Current trends and future directions. Trends in Food Science & Technology, 150, 104574. https://doi.org/10.1016/j.tifs.2024.104574.
  • Milli, M., Söylemez Milli, N., & Parlak, İ. H. (2025). Rapid detection of honey adulteration using machine learning on gas sensor data. Npj Science of Food, 9(1), 74. https://doi.org/10.1038/s41538-025-00440-9.
  • Neubert, S., Roddelkopf, T., Al-Okby, M. F. R., Junginger, S., & Thurow, K. (2021). Flexible IoT Gas Sensor Node for Automated Life Science Environments Using Stationary and Mobile Robots. Sensors, 21(21), 7347. https://doi.org/10.3390/s21217347.
  • Panteli, C., Stylianou, M., Anastasiou, A., & Andreou, C. (2023). Rapid Detection of Bacterial Infection Using Gas Phase Time Series Analysis. Proceedings of IEEE Sensors. https://doi.org/10.1109/SENSORS56945.2023.10324881.
  • Panteli, C., Stylianou, M., Anastasiou, A., & Andreou, C. (2024). Gas-Phase Detection of UTI-causing Bacteria using Off-the-Shelf Gas Sensors and Change-Point Detection. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2024.3402828.
  • Parlak, İ. H., Milli, M., & Milli, N. S. (2025). Machine Learning–Based Detection of Olive Oil Adulteration Using BME688 Gas Sensor Matrix. Food Analytical Methods. https://doi.org/10.1007/s12161-025-02803-0.
  • Putri, S. P., Ikram, M. M. M., Sato, A., Dahlan, H. A., Rahmawati, D., Ohto, Y., & Fukusaki, E. (2022). Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology. Journal of Bioscience and Bioengineering, 133(5), 425–435. https://doi.org/10.1016/j.jbiosc.2022.01.011.
  • Ramadan, M. N. A., Alkhedher, M., Tevfik Akgun, B., & Alp, S. (2023). Portable AI-powered spice recognition system using an eNose based on metal oxide gas sensors. 2023 International Conference on Smart Applications, Communications and Networking, SmartNets 2023.
  • Rozanova, S., Barkovits, K., Nikolov, M., Schmidt, C., Urlaub, H., & Marcus, K. (2021). Quantitative Mass Spectrometry-Based Proteomics: An Overview (pp. 85–116). https://doi.org/10.1007/978-1-0716-1024-4_8.
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0.
  • Shahzaib, M. (2023). Gas Sensor Based Remote Environmental Monitoring: Wildfire Detection.
  • Siddiqui, T., Khan, M. U., Sharma, V., & Gupta, K. (2024). Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. Phytomedicine Plus, 4(2), 100549. https://doi.org/10.1016/j.phyplu.2024.100549.
  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002.
  • Söylemez Milli, N., Parlak, İ. H., & Milli, M. (2025). A New Approach for Machine Learning-Based Recognition of Meat Species Using a BME688 Gas Sensors Matrix. Chiang Mai Journal of Science, 52(3), 1–14. https://doi.org/10.12982/CMJS.2025.031.
  • Tămâian, A., & Folea, S. (2024). Spoiled Food Detection Using a Matrix of Gas Sensors. 2024 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 1–5. https://doi.org/10.1109/AQTR61889.2024.10554106.
  • Xu, A., Cai, T., Shen, D., & Wang, A. (2021). Food Odor Recognition via Multi-step Classification. https://arxiv.org/abs/2110.09956.
  • Ye, Q., Wu, Y., Liu, W., Ma, X., He, D., Wang, Y., Li, J., & Wu, W. (2024). Identification and quantification of nanoplastics in different crops using pyrolysis gas chromatography-mass spectrometry. Chemosphere, 354, 141689. https://doi.org/10.1016/j.chemosphere.2024.141689.

Detection of Potential Biological and Chemical Threat Agents by Al-Driven Electronic Nose

Year 2025, Volume: 21 Issue: 2, 173 - 197
https://doi.org/10.56850/jnse.1693081

Abstract

The detection of potential biological threat elements is of vital importance in terms of environmental monitoring, public health, and public safety. The possibility of future military or terrorist use of such biological agents poses a serious risk to global security. Therefore, early detection of the threat plays a critical role in taking effective measures against a possible biological attack and putting emergency action plans into effect on time. In this study, an electronic nose system that can safely and effectively identify complex gas mixtures was designed by developing an artificial intelligence-based model on the data collected using a sensitive gas sensor matrix. However, in research studies, the direct use of highly hazardous biological and chemical agents is not possible due to high-security risks, ethical concerns, and legal restrictions. Therefore, in this study, a simulation environment was established to represent complex biological and chemical gas elements. The collected data was analysed with the Artificial Neural Network model, which is known to show strong performance in gas recognition tasks. The findings indicate that this approach can be used to detect potential biological threats and that electronic nose technologies can be evaluated in the field of security with artificial intelligence-supported applications.

Ethical Statement

An ethical committee approval and/or legal/special permission has not been required within the scope of this study.

Supporting Institution

The author declares that no funding was received for this research.

Thanks

The author would like to thank Musa Milli for his support during the study.

References

  • Aksenov, A. A., Sandrock, C. E., Zhao, W., Sankaran, S., Schivo, M., Harper, R., Cardona, C. J., Xing, Z., & Davis, C. E. (2014). Cellular Scent of Influenza Virus Infection. ChemBioChem, 15(7), 1040–1048. https://doi.org/10.1002/cbic.201300695.
  • Al-Okby, M. F. R., Roddelkopf, T., Fleischer, H., & Thurow, K. (2022). Evaluating a Novel Gas Sensor for Ambient Monitoring in Automated Life Science Laboratories. Sensors, 22(21), 8161. https://doi.org/10.3390/s22218161.
  • Bosch Sensor Tec. (2021). BME 688 Development Kit.
  • Bosch Sensor Tec.GmbH. (2021). The BME688 is gas sensor with Artificial Intelligence (AI) and integrated high-linearity and high-accuracy pressure, humidity and temperature sensors. https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme688-ds000.pdf.
  • Botticini, S., Comini, E., Dello Iacono, S., Flammini, A., Gaioni, L., Galliani, A., Ghislotti, L., Lazzaroni, P., Re, V., Sisinni, E., Verzeroli, M., & Zappa, D. (2024). Index Air Quality Monitoring for Light and Active Mobility. Sensors, 24(10), 3170. https://doi.org/10.3390/s24103170. Dokic, K., Radisic, B., & Kukina, H. (2024). Application of Machine Learning Algorithms for Monitoring of Spoilage of Cow’s Milk Using the Cheap Gas Sensor. 2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–6. https://doi.org/10.1109/ECAI61503.2024.10607506.
  • Effah, F., Taiwo, B., Baines, D., Bailey, A., & Marczylo, T. (2022). In Vitro High-Throughput Toxicological Assessment of E-Cigarette Flavors in Human Bronchial Epithelial Cells and the role of TRPA1 in Cinnamon Flavor-Induced Toxicity.
  • Gao, Z., Lin, Q., He, Q., Liu, C., Cai, H., & Ni, H. (2024). Rapid Detection of Spoiled Apple Juice Using Electrical Impedance Spectroscopy and Data Augmentation-Based Machine Learning. Chiang Mai Journal of Science, 51(5), 1–13. https://doi.org/10.12982/CMJS.2024.071.
  • Garofalo, E., Taurino, L., Di Maio, L., Neitzert, H. C., & Incarnato, L. (2023). Assessment of Melt Compounding with Zeolites as an Effective Deodorization Strategy for Mixed Plastic Wastes and Comparison with Degassing. Polymers, 15(8). https://doi.org/10.3390/polym15081858.
  • González, V., Godoy, J., Arroyo, P., Meléndez, F., Díaz, F., López, Á., Suárez, J. I., & Lozano, J. (2024). Development of a Smartwatch with Gas and Environmental Sensors for Air Quality Monitoring. Sensors, 24(12), 3808. https://doi.org/10.3390/s24123808.
  • Kumar, A., O’Leary, C., Winkless, R., Thompson, M., Davies, H. L., Shaw, M., Andrews, S. J., Carslaw, N., & Dillon, T. J. (2025). Fingerprinting the emissions of volatile organic compounds emitted from the cooking of oils, herbs, and spices. Environmental Science: Processes & Impacts, 27(1), 244–261.
  • Lee, K., Cho, I., Kang, M., Jeong, J., Choi, M., Woo, K. Y., Yoon, K.-J., Cho, Y.-H., & Park, I. (2023). Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning. ACS Nano, 17(1), 539–551. https://doi.org/10.1021/acsnano.2c09314.
  • Leite, S., Costa, R., Carvalho, J., Sapage, T., Bessa, R., & Paiva, S. (2023). Embedded Intelligence of End Devices with MOS Sensors for CH4Detection. IEEE International Symposium on Industrial Electronics, 2023-June. https://doi.org/10.1109/ISIE51358.2023.10228140. Mahanti, N. K., Shivashankar, S., Chhetri, K. B., Kumar, A., Rao, B. B., Aravind, J., & Swami, D. V. (2024). Enhancing food authentication through E-nose and E-tongue technologies: Current trends and future directions. Trends in Food Science & Technology, 150, 104574. https://doi.org/10.1016/j.tifs.2024.104574.
  • Milli, M., Söylemez Milli, N., & Parlak, İ. H. (2025). Rapid detection of honey adulteration using machine learning on gas sensor data. Npj Science of Food, 9(1), 74. https://doi.org/10.1038/s41538-025-00440-9.
  • Neubert, S., Roddelkopf, T., Al-Okby, M. F. R., Junginger, S., & Thurow, K. (2021). Flexible IoT Gas Sensor Node for Automated Life Science Environments Using Stationary and Mobile Robots. Sensors, 21(21), 7347. https://doi.org/10.3390/s21217347.
  • Panteli, C., Stylianou, M., Anastasiou, A., & Andreou, C. (2023). Rapid Detection of Bacterial Infection Using Gas Phase Time Series Analysis. Proceedings of IEEE Sensors. https://doi.org/10.1109/SENSORS56945.2023.10324881.
  • Panteli, C., Stylianou, M., Anastasiou, A., & Andreou, C. (2024). Gas-Phase Detection of UTI-causing Bacteria using Off-the-Shelf Gas Sensors and Change-Point Detection. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2024.3402828.
  • Parlak, İ. H., Milli, M., & Milli, N. S. (2025). Machine Learning–Based Detection of Olive Oil Adulteration Using BME688 Gas Sensor Matrix. Food Analytical Methods. https://doi.org/10.1007/s12161-025-02803-0.
  • Putri, S. P., Ikram, M. M. M., Sato, A., Dahlan, H. A., Rahmawati, D., Ohto, Y., & Fukusaki, E. (2022). Application of gas chromatography-mass spectrometry-based metabolomics in food science and technology. Journal of Bioscience and Bioengineering, 133(5), 425–435. https://doi.org/10.1016/j.jbiosc.2022.01.011.
  • Ramadan, M. N. A., Alkhedher, M., Tevfik Akgun, B., & Alp, S. (2023). Portable AI-powered spice recognition system using an eNose based on metal oxide gas sensors. 2023 International Conference on Smart Applications, Communications and Networking, SmartNets 2023.
  • Rozanova, S., Barkovits, K., Nikolov, M., Schmidt, C., Urlaub, H., & Marcus, K. (2021). Quantitative Mass Spectrometry-Based Proteomics: An Overview (pp. 85–116). https://doi.org/10.1007/978-1-0716-1024-4_8.
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0.
  • Shahzaib, M. (2023). Gas Sensor Based Remote Environmental Monitoring: Wildfire Detection.
  • Siddiqui, T., Khan, M. U., Sharma, V., & Gupta, K. (2024). Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. Phytomedicine Plus, 4(2), 100549. https://doi.org/10.1016/j.phyplu.2024.100549.
  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002.
  • Söylemez Milli, N., Parlak, İ. H., & Milli, M. (2025). A New Approach for Machine Learning-Based Recognition of Meat Species Using a BME688 Gas Sensors Matrix. Chiang Mai Journal of Science, 52(3), 1–14. https://doi.org/10.12982/CMJS.2025.031.
  • Tămâian, A., & Folea, S. (2024). Spoiled Food Detection Using a Matrix of Gas Sensors. 2024 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 1–5. https://doi.org/10.1109/AQTR61889.2024.10554106.
  • Xu, A., Cai, T., Shen, D., & Wang, A. (2021). Food Odor Recognition via Multi-step Classification. https://arxiv.org/abs/2110.09956.
  • Ye, Q., Wu, Y., Liu, W., Ma, X., He, D., Wang, Y., Li, J., & Wu, W. (2024). Identification and quantification of nanoplastics in different crops using pyrolysis gas chromatography-mass spectrometry. Chemosphere, 354, 141689. https://doi.org/10.1016/j.chemosphere.2024.141689.
There are 28 citations in total.

Details

Primary Language English
Subjects Deep Learning, Artificial Life and Complex Adaptive Systems, Control Theoryand Applications
Journal Section Articles
Authors

Mehmet Milli 0000-0002-0759-4433

Early Pub Date October 8, 2025
Publication Date October 10, 2025
Submission Date May 6, 2025
Acceptance Date July 7, 2025
Published in Issue Year 2025 Volume: 21 Issue: 2

Cite

APA Milli, M. (2025). Detection of Potential Biological and Chemical Threat Agents by Al-Driven Electronic Nose. Journal of Naval Sciences and Engineering, 21(2), 173-197. https://doi.org/10.56850/jnse.1693081