Research Article
BibTex RIS Cite

Design of Video Tracking Software for Analysis of Animal Movement in Water Maze Experiments

Year 2025, Volume: 21 Issue: 2, 141 - 172
https://doi.org/10.56850/jnse.1697299

Abstract

In this study, a video tracking software was designed for use in Morris water tank (MST) experiments. The software, developed using Python programming language and Bootstrap interface, enables the detection, tracking and analysis of animal movements from both recorded video files and live video streams. The software, which was originally designed and developed within the scope of this study, uses image processing techniques, which are vital in spatial memory studies, and automates processes such as experiment design, region identification and object detection, unlike the traditional method of laboratory tracking. also performs functions such as experiment control, visualization of traces and calculation of analysis parameters. Using this advanced video monitoring system, we aim to more effectively characterize the data obtained with MST and improve statistical analysis. Thus, we aim to provide practical solutions to the problems encountered in neuroscience research and increase the efficiency of experiments

References

  • Akız, İ. (n.d.). Görüntü işleme, https://akizilkaya.pamukkale.edu.tr/Bölüm4_goruntu_isleme.pdf
  • Bailoo, J. D., Bohlen, M. O., & Wahlsten, D. (2010). The precision of video and photocell tracking systems and the elimination of tracking errors with infrared backlighting. Journal of neuroscience methods, 188(1), 45-52.
  • Bootstrap. (n.d.). Introduction to Bootstrap 5.3. https://getbootstrap.com/docs/5.3/getting-started/introduction/
  • Brunetti, A., Buongiorno, D., Trotta, G. F., & Bevilacqua, V. (2018). Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing, 300, 17-33.
  • Burešová, O., Bolhuis, J. J., & Bureš, J. (1986). Differential effects of cholinergic blockade on performance of rats in the water tank navigation task and in a radial water maze. Behavioral neuroscience, 100(4), 476-482.
  • Çalışkan, D., & Demir, Ö. (2022). Derin Öğrenme Yöntemleri ile Şüpheli Davraniş Tespiti. International Periodical Of Recent Technologies İn Applied Engineering, 3(1), 28-43. Chaudhary, S., Khan, M. A., & Bhatnagar, C. (2018). Multiple anomalous activity detection in videos. Procedia Computer Science, 125, 336-345.
  • Chernyuk, D. P., Bol’shakova, A. V., Vlasova, O. L., & Bezprozvanny, I. B. (2021). Possibilities and prospects of the behavioral test “morris water maze”. Journal of Evolutionary Biochemistry and Physiology, 57(2), 289-303.
  • Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R., & Herrera, F. (2020). Deep learning in video multi-object tracking: A survey. Neurocomputing, 381, 61-88.
  • Dalm, S., Grootendorst, J., De Kloet, E. R., & Oitzl, M. S. (2000). Quantification of swim patterns in the Morris water maze. Behavior Research Methods, Instruments, & Computers, 32, 134-139.
  • Dalm, S., Grootendorst, J., De Kloet, E. R., & Oitzl, M. S. (2000). Quantification of swim patterns in the Morris water maze. Behavior Research Methods, Instruments, & Computers, 32, 134-139.
  • Demir, Ö., Doğan, B., Bayezit, E. Ç., & Yıldız, K. (2019). Automatic Detection and Calculation of Drusen Areas in Retinal Fundus Fluorescein Angiography Images. Marmara Fen Bilimleri Dergisi, 30(2), 126-132.
  • Derry, J. F., & Elliott, C. J. H. (1997). Automated 3-D tracking of video-captured movement using the example of an aquatic mollusk. Behavior Research Methods, Instruments, & Computers, 29(3), 353-357.
  • D’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain research reviews, 36(1), 60-90.
  • Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), 315-352.
  • Ermiş, E., Koç, C., Mergen, H. Ş., Makinecioğlu, İ., Vural, A. P., Cansev, M., ... & Çamlı, Ş. E. (2023). Deneysel Şizofreni Modelinde Bilişsel Fonksiyonlar ve Hipokampal Sinaptofizin Düzeylerinin İncelenmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 49(3), 367-373.
  • Fentrop, N., & CT, W. (2000, August). Fiat lux! Spotting a common experimental problem. In Proceedings of Measuring Behavior (Vol. 2000, p. 108).
  • Forero, M. G., Hernández, N. C., Morera, C. M., Aguilar, L. A., Aquino, R., & Baquedano, L. E. (2023). A new automatic method for tracking rats in the Morris water maze. Heliyon, 9(7).
  • Grossmann, M., & Skinner, M. H. (1996). A simple computer based system to analyze Morris water maze trials on-line. Journal of Neuroscience methods, 70(2), 171-175.
  • Higaki, A., Mogi, M., Iwanami, J., Min, L. J., Bai, H. Y., Shan, B. S., ... & Horiuchi, M. (2018). Recognition of early stage thigmotaxis in Morris water maze test with convolutional neural network. PloS one, 13(5), e0197003.
  • Karaman, I., Kizilay-Ozfidan, G., Karadag, C. H., & Ulugol, A. (2013). Lack of effect of ceftriaxone, a GLT-1 transporter activator, on spatial memory in mice. Pharmacology Biochemistry and Behavior, 108, 61-65.
  • Li, D., Wang, R., Xie, C., Liu, L., Zhang, J., Li, R., ... & Liu, W. (2020). A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors, 20(3), 578.
  • Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., & Kim, T. K. (2021). Multiple object tracking: A literature review. Artificial intelligence, 293, 103448.
  • Martin, B. R., Prescott, W. R., & Zhu, M. (1992). Quantitation of rodent catalepsy by a computer-imaging technique. Pharmacology Biochemistry and Behavior, 43(2), 381-386.
  • Mazur-Milecka, M., & Nowakowski, A. (2010). An automated system for analysis of mouse movement activity. Biocybernetics and Biomedical Engineering, 30(2), 55-65.
  • Morrel-Samuels, P., & Krauss, R. M. (1990). Cartesian analysis: A computer-video interface for measuring motion without physical contact. Behavior Research Methods, Instruments, & Computers, 22(5), 466-470. Nawaratne, R., Alahakoon, D., De Silva, D., & Yu, X. (2019). Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Transactions on Industrial Informatics, 16(1), 393-402.
  • Noldus, L. P., Spink, A. J., & Tegelenbosch, R. A. (2001). EthoVision: a versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, & Computers, 33, 398-414.
  • Noldus, L. P., Spink, A. J., & Tegelenbosch, R. A. (2002). Computerised video tracking, movement analysis and behaviour recognition in insects. Computers and Electronics in agriculture, 35(2-3), 201-227.
  • OpenCV. (n.d.). OpenCV documentation. https://docs.opencv.org/ Pereira, P., & Oliveira, R. F. (1994). A simple method using a single video camera to determine the three-dimensional position of a fish. Behavior Research Methods, Instruments, & Computers, 26(4), 443-446.
  • Python Software Foundation. (n.d.). Python programming language. https://www.python.org/
  • Santucci, A. C. (1995). An affordable computer-aided method for conducting Morris water maze testing. Behavior Research Methods, Instruments, & Computers, 27(1), 60-64.
  • Spink, A. J., Buma, M. O. S., & Tegelenbosch, R. A. J. (2000). EthoVision color identification: a new method for color tracking using both hue and saturation. In Proceedings of Measuring Behavior (Vol. 2000, pp. 295-6).
  • Spink, A. J., Tegelenbosch, R. A. J., Buma, M. O. S., & Noldus, L. P. J. J. (2001). The EthoVision video tracking system—a tool for behavioral phenotyping of transgenic mice. Physiology & behavior, 73(5), 731-744.
  • Spink, A. J., Tegelenbosch, R. A. J., Buma, M. O. S., & Noldus, L. P. J. J. (2001). The EthoVision video tracking system—a tool for behavioral phenotyping of transgenic mice. Physiology & behavior, 73(5), 731-744.
  • Spruijt, B. M., & Gispen, W. H. (1983). Prolonged animal observation by use of digitized videodisplays. Pharmacology Biochemistry and Behavior, 19(5), 765-769. Spruijt, B. M., Pitsikas, N., Algeri, S., & Gispen, W. H. (1990). The ACTH/MSH (4–9) analog Org2766 improves retrieval of information after a fimbria fornix transection. Brain Research, 527, 192–197.
  • Stack Overflow. (2023). Stack Overflow Developer Survey 2023. https://survey.stackoverflow.co/2023/#technology-most-popular-technologies
  • Terry Jr, A. V. (2009). Spatial navigation (water maze) tasks. Methods of behavior analysis in neuroscience, 2, 153-166.
  • Kanna, J. V., Raj, S. E., Meena, M., Meghana, S., & Roomi, S. M. (2020, February). Deep learning based video analytics for person tracking. In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) (pp. 1-6). IEEE.
  • Vural, R. A., Sert, M. Y., & Karaköse, B. (2018). Real-time driver fatigue detection system. Marmara Journal of Science and Technology, 30(3), 249–259.
  • Wikipedia. (n.d.). Visual Studio Code. https://tr.wikipedia.org/wiki/Visual_Studio_Code
  • Yang, S., Bailey, E., Yang, Z., Ostrometzky, J., Zussman, G., Seskar, I., & Kostic, Z. (2020, March). Cosmos smart intersection: Edge compute and communications for bird's eye object tracking. In 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (pp. 1-7). IEEE.
  • Yavuzkılıç, S. (2017). Morris Su Labirenti analizinin video işleme ile gerçekleştirilmesi (Yüksek Lisans Tezi, Elektrik Elektronik Teknolojileri Anabilim Dalı). Pamukkale Üniversitesi.
  • Zhang, L., Gray, H., Ye, X., Collins, L., & Allinson, N. (2019). Automatic individual pig detection and tracking in pig farms. Sensors, 19(5), 1188.
  • Zorin, A., Chernyuk, D., Vlasova, O., Bolsunovskaya, M., & Bezprozvanny, I. (2020). Software for analyzing the behavioural test “Morris Water Maze”. In E3S Web of Conferences (Vol. 203, p. 01029). EDP Sciences.
There are 43 citations in total.

Details

Primary Language English
Subjects Image Processing, Video Processing, Electronics, Sensors and Digital Hardware (Other)
Journal Section Articles
Authors

Veysel Böcekçi 0000-0003-4559-7173

Early Pub Date October 8, 2025
Publication Date October 11, 2025
Submission Date May 11, 2025
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 21 Issue: 2

Cite

APA Böcekçi, V. (2025). Design of Video Tracking Software for Analysis of Animal Movement in Water Maze Experiments. Journal of Naval Sciences and Engineering, 21(2), 141-172. https://doi.org/10.56850/jnse.1697299