BibTex RIS Cite

Underwater Acoustic Signal Recognition Methods

Year 2009, Volume: 5 Issue: 3, 64 - 78, 25.03.2016

Abstract

References

  • Lobo, V., F. M. Pires, ”Ship Noise Classification Using Kohonen Networks”, EANN 95, Kurcan, R. Serdar, “Isolated Word Recognition from in-Ear Microphone Data Using Hidden Markov Models (Hmm)”, NPS Master Thesis, 2006.
  • Nooralahiyan, A., H. Kirby, “Vehicle Classification by Acoustic Signature”, Elsevier Science Ltd., 1998.
  • Lin, Jing, “Feature Extraction of Machine Sound Using Wavelet and Its Application in Fault Diagnosis”, Elsevier Science Ltd., 2001.
  • Bennett, Richard Campbell. ”Classification of Underwater Signals Using a BACK- Propagation Neural Network”, NPS Master Thesis, 1997.
  • Halkias C., Daniel P., “Estimating the Number of Marine Mammals Using Recordings of Clicks from One Microphone”, Columbia University, 2006
  • Urazghildiiev, I., C.W. Clark, T. Krein, “Acoustic Detection and Recognition of Fin Whale and North Atlantic Right Whale Sounds”, Bioacoustics Research Prog., Cornell Laboratory of Ornithology, 2008.
  • Alkan, Mahmut. “Warship Sound Signature Recognition Using Mel Frequency Cepstral Coefficients”, Naval Science and Engineering Institute MS Thesis, 2005.
  • Yue, Z., K. Wei, X. Qing, “A Novel Modelling and Recognition Method for Underwater Sound Based on HMT in Wavelet Domain”, Springer, Verlag Berlin Heidelberg, 2004.
  • Rashidul, H., M. Jamil, G. Rabbani, S. Rahman, “Speaker Identification Using Mel Frequency Cepstral Coefficients”, 3rd International Conference on Electrical & Computer Engineering, Dhaka, 2004.
  • Bardici, N., B. Skarin, "Speech Recognition using Hidden Markov Model", Blekinge Institute of Technology MS Thesis, 2006.
  • Vergin, R., “An Algorithm for Robust Signal Modeling in Speech Recognition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), 1998.
  • Vaseghi, Saeed V., “Advanced Digital Signal Processing and Noise Reduction”, Second Edition, John Wiley & Sons Ltd., 2000
  • Rabiner, L. R., R. W. Schafer, “Digital Processing of Speech Signals”, Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
  • Picone, J. “Signal Modeling Techniques in Speech Recognition,” Proceedings of the IEEE, 1993.
  • Wikipedia, the free encyclopedia web site, 2007, (last accessed on 16 July 2009)
  • Ayats A.R., “Object Recognition for Autonomous Robots: Comparison of two approaches”, Report of the stay at the Autonomous Systems Lab, 2007.
  • Rabiner, L.R., “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” IEEE, 1989.
  • Gold, B., N. Morgan, “Speech and Audio Signal Processing,” John Wiley & Sons, Deller, J. R., J. Hansen, J. Proakis, “Discrete-Time Processing of Speech Signals”, IEEE Press, New York, 2000.
  • Baum L.E., T. Petrie, “Statistical inference for probabilistic functions of finite state Markov chains,” Annals of Mathematical Statistics, 1966.
  • Baum, L.E., T. Petrie, G. Soules, “A maximization technique in the statistical analysis of probabilistic functions of Markov chains,” Annals of Mathematical Statistics, 1970.
  • RABINER L. R., B-H. Juang, “Fundamentals of Speech Recognition”, Prentice Hall, Kil, D.H., F. Shin, “Pattern Recognition and Prediction with Applications to Signal Processing (Modern Acoustics and Signal Processing)”, 1998.
  • Arica, N., Fatos. T.Y., “A Shape Descriptor Based on Circular Hidden Markov Model”, Department of Computer Engineering, METU, 2000
  • Arica, N., Fatos. T.Y., “A New HMM Topology for Shape Recognition”, Department of Computer Engineering, METU, 1995.
  • Teknomo, K., “K Nearest Neighbors Tutorial”, 2006, people.revoledu.com/, (last accessed on 16 July 2009)
  • Grudic,G. Nearest Neighbor Learning lecture notes, 2005, www.cs.colorado.edu (last accessed on 16 July 2009)
  • Vapnik, V., Golowich S., Smola A., ”Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing”, Cambridge, 1997.
  • Temko A., C. Nadeu, “Classification of Acoustic Events Using SVM-Based Clustering Schemes”, Universitat Politècnica de Catalunya, 2005.
  • Jakkula, Vikramaditya, “Tutorial on Support Vector Machine (SVM)”, School of EECS, Washington State University, 2006.

UNDERWATER ACOUSTIC SIGNAL RECOGNITION METHODS

Year 2009, Volume: 5 Issue: 3, 64 - 78, 25.03.2016

Abstract

Su altı Akustik Sinyal Tanıma (SAST) terimi, platformları ürettikleri seslerden
bazı teknikler kullanarak tanıma işlemi için kullanılmaktadır. Her gemi
makine, pervane, tekne yapısı ve mürettebat alışkanlıklarının birleşiminden
meydana gelen kendine özgü özelliğe sahiptir. Bu makalede, SAST için iki değişik yöntem önermekteyiz. Her iki yöntemde özellik çıkarımı işlemi
konuşma tanıma konusunda yarar sağladığı kanıtlanmış Mel-Frekans
Kepstral Katsayıları ve Doğrusal Kestirimci Kodlama ile türetilmiş Kepstral
Katsayılar ile hesaplanmaktadır. İlk yöntem de öznitelik çıkarımından sonra
sinyal vektör dizisi olarak ifade edilir. Vektör dizilerinin sınıflandırılması
daha sonra değişik topolojilere sahip Saklı Markov Modelleri ile
yapılmaktadır. İkinci yöntem çerçeve özelliklerini Akustik ses kümesi
yaklaşımını kullanarak temsil eder. Eğitme safhasında, giriş sinyalinin
çerçevelerinden çıkarılan tüm öznitelik vektörleri önce bir akustik kelimeler
kümesine gruplandırılır. Öznitelik vektörlerinin her biri bir akustik kelimeye
atanmaktadır.

References

  • Lobo, V., F. M. Pires, ”Ship Noise Classification Using Kohonen Networks”, EANN 95, Kurcan, R. Serdar, “Isolated Word Recognition from in-Ear Microphone Data Using Hidden Markov Models (Hmm)”, NPS Master Thesis, 2006.
  • Nooralahiyan, A., H. Kirby, “Vehicle Classification by Acoustic Signature”, Elsevier Science Ltd., 1998.
  • Lin, Jing, “Feature Extraction of Machine Sound Using Wavelet and Its Application in Fault Diagnosis”, Elsevier Science Ltd., 2001.
  • Bennett, Richard Campbell. ”Classification of Underwater Signals Using a BACK- Propagation Neural Network”, NPS Master Thesis, 1997.
  • Halkias C., Daniel P., “Estimating the Number of Marine Mammals Using Recordings of Clicks from One Microphone”, Columbia University, 2006
  • Urazghildiiev, I., C.W. Clark, T. Krein, “Acoustic Detection and Recognition of Fin Whale and North Atlantic Right Whale Sounds”, Bioacoustics Research Prog., Cornell Laboratory of Ornithology, 2008.
  • Alkan, Mahmut. “Warship Sound Signature Recognition Using Mel Frequency Cepstral Coefficients”, Naval Science and Engineering Institute MS Thesis, 2005.
  • Yue, Z., K. Wei, X. Qing, “A Novel Modelling and Recognition Method for Underwater Sound Based on HMT in Wavelet Domain”, Springer, Verlag Berlin Heidelberg, 2004.
  • Rashidul, H., M. Jamil, G. Rabbani, S. Rahman, “Speaker Identification Using Mel Frequency Cepstral Coefficients”, 3rd International Conference on Electrical & Computer Engineering, Dhaka, 2004.
  • Bardici, N., B. Skarin, "Speech Recognition using Hidden Markov Model", Blekinge Institute of Technology MS Thesis, 2006.
  • Vergin, R., “An Algorithm for Robust Signal Modeling in Speech Recognition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '98), 1998.
  • Vaseghi, Saeed V., “Advanced Digital Signal Processing and Noise Reduction”, Second Edition, John Wiley & Sons Ltd., 2000
  • Rabiner, L. R., R. W. Schafer, “Digital Processing of Speech Signals”, Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
  • Picone, J. “Signal Modeling Techniques in Speech Recognition,” Proceedings of the IEEE, 1993.
  • Wikipedia, the free encyclopedia web site, 2007, (last accessed on 16 July 2009)
  • Ayats A.R., “Object Recognition for Autonomous Robots: Comparison of two approaches”, Report of the stay at the Autonomous Systems Lab, 2007.
  • Rabiner, L.R., “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” IEEE, 1989.
  • Gold, B., N. Morgan, “Speech and Audio Signal Processing,” John Wiley & Sons, Deller, J. R., J. Hansen, J. Proakis, “Discrete-Time Processing of Speech Signals”, IEEE Press, New York, 2000.
  • Baum L.E., T. Petrie, “Statistical inference for probabilistic functions of finite state Markov chains,” Annals of Mathematical Statistics, 1966.
  • Baum, L.E., T. Petrie, G. Soules, “A maximization technique in the statistical analysis of probabilistic functions of Markov chains,” Annals of Mathematical Statistics, 1970.
  • RABINER L. R., B-H. Juang, “Fundamentals of Speech Recognition”, Prentice Hall, Kil, D.H., F. Shin, “Pattern Recognition and Prediction with Applications to Signal Processing (Modern Acoustics and Signal Processing)”, 1998.
  • Arica, N., Fatos. T.Y., “A Shape Descriptor Based on Circular Hidden Markov Model”, Department of Computer Engineering, METU, 2000
  • Arica, N., Fatos. T.Y., “A New HMM Topology for Shape Recognition”, Department of Computer Engineering, METU, 1995.
  • Teknomo, K., “K Nearest Neighbors Tutorial”, 2006, people.revoledu.com/, (last accessed on 16 July 2009)
  • Grudic,G. Nearest Neighbor Learning lecture notes, 2005, www.cs.colorado.edu (last accessed on 16 July 2009)
  • Vapnik, V., Golowich S., Smola A., ”Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing”, Cambridge, 1997.
  • Temko A., C. Nadeu, “Classification of Acoustic Events Using SVM-Based Clustering Schemes”, Universitat Politècnica de Catalunya, 2005.
  • Jakkula, Vikramaditya, “Tutorial on Support Vector Machine (SVM)”, School of EECS, Washington State University, 2006.
There are 28 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Murat Küçükbayrak This is me

Özhan Güneş This is me

Nafiz Arıca This is me

Publication Date March 25, 2016
Published in Issue Year 2009 Volume: 5 Issue: 3

Cite

APA Küçükbayrak, M. ., Güneş, Ö. ., & Arıca, N. . (2016). UNDERWATER ACOUSTIC SIGNAL RECOGNITION METHODS. Journal of Naval Sciences and Engineering, 5(3), 64-78.