Year 2022,
, 61 - 69, 31.03.2022
Ufuk Öztürk
,
Burcu Sarıkaya
,
Pınar Haskul
,
Ayşegül Emir
References
- H. Abdel-Aziz, M. K. Saad, Computation of Smarandache Curves According to Darboux Frame in Minkowski 3-Space, Journal of the Egyptian Mathematical Society 25(4) (2017) 382–390.
- A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics 2 (2010) 30–36.
- O. Bektaş, S. Yüce, Special Smarandache Curves According to Darboux Frame in $E^3$, Romanian Journal of Mathematics and Computer Science 3(1) (2013) 48–59.
- M. Çetin, Y. Tuncer, M. K. Karacan, Smarandache Curves According to Bishop Frame in Euclidean 3-Space, General Mathematics Notes 20(2) (2014) 50–66.
- M. Elzawy, S. Mosa, Smarandache Curves in the Galilean 4-Space G4, Journal of the Egyptian Mathematical Society 25(1) (2017) 53–56.
- T. Kahraman, H. H. Uğurlu, Dual Smarandache Curves and Smarandache Ruled Surfaces, Mathematical Sciences and Applications E-Notes 2(1) (2014) 83–98.
- E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudohyperbolical Smarandache Curves in Minkowski 3-Space, International Journal of Mathematics and Mathematical Sciences Article ID 658670 (2013) 7 pages.
- E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudospherical Smarandache Curves in Minkowski 3-Space, Journal of Applied Mathematics Article ID 404521 (2014) 14 pages.
- M. Mak, H. Altınbas, Spacelike Smarandache Curves of Timelike Curves in Anti de Sitter 3-Space, International Journal of Mathematical Combinatorics 3 (2016) 1–16.
- U. Ozturk, E. B. Koc Ozturk, Smarandache Curves according to Curves on a Spacelike Surface in Minkowski 3-Space, Journal of Discrete Mathematics Article ID 829581 (2014) 10 pages.
- U. Ozturk, E. B. Koc Ozturk, K. İlarslan, E. Nešović, On Smarandache Curves Lying in Lightcone in Minkowski 3-Space, Journal of Dynamical Systems and Geometric Theories 12(1) (2014) 81–91.
- E. Solouma, Special Equiform Smarandache Curves in Minkowski Space-Time, Journal of the Egyptian Mathematical Society 25(3) (2017) 319–325.
- S. Şenyurt, Y. Altun, C. Cevahir, Smarandache Curves According to Sabban Frame Belonging to Mannheim Curves Pair, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68(1) (2019) 500–513.
- S. Şenyurt, C. Cevahir, Y. Altun, On the Smarandache Curves of Spatial Quaternionic Involute Curve, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 90(5) (2020) 827–837.
- S. Şenyurt, A. Çaliskan, U. Çelik, Smarandache Curves of Bertrand Curves Pair According to Frenet Frame, Boletim da Sociedade Paranaense de Matemàtica 39(5) (2021) 163–173.
- K. Taşköprü, M. Tosun, Smarandache Curves on $S^2$, Boletim da Sociedade Paranaense de Matem´atica 32(1) (2014) 51–59.
- M. Turgut, S. Yilmaz, Smarandache Curves in Minkowski Space-Time 3 (2008) 51–55.
- K. Nomizu, N. Katsumi, T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.
- U. Simon, Affine Differential Geometry, in: Handbook of Differential Geometry, Vol. 1, Elsevier, 2000, pp. 905–961.
- S. Buchin, Affine Differential Geometry, Gordon and Breach (China), 1983.
- N. Hu, Affine Geometry of Space Curves and Homogeneous Surfaces, PhD Dissertation, Department of Mathematics Graduate School of Science Hokkaaido University (2012) Japan.
- L. A. Santalò, A Geometrical Characterization for the Affine Differential Invariants of a Space Curve, Bulletin of the American Mathematical Society 52(8) (1946) 625–632.
- P. J. Olver, Moving Frames and Differential Invariants in Centro-Affine Geometry, Lobachevskii Journal of Mathematics 31(2) (2010) 77–89.
- Y. Tunçer, H. Kocayigit, M. K. Karacan, Indicatrices of Curves in Affine 3-Space, Palestine Journal of Mathematics 9(2) (2020) 858–865.
- Y. Tunçer, H. Kocayigit, M. K. Karacan, Naturel Mates of Equiaffine Space Curves in Affine 3-Space, Thermal Science 23(6) (2019) 2149–2157.
- Y. Tunçer, Position Vectors of the Curves in Affine 3-Space According to Special Affine Frames, International Journal of Mathematical Combinatorics 2 (2019) 43–59.
On Smarandache Curves in Affine 3-Space
Year 2022,
, 61 - 69, 31.03.2022
Ufuk Öztürk
,
Burcu Sarıkaya
,
Pınar Haskul
,
Ayşegül Emir
Abstract
In this paper, we introduce Smarandache curves of an affine $C^∞$-curve in affine 3-space. Besides, we present the relationship between the Frenet frames of the curve couple and the Frenet apparatus of each obtained curve.
References
- H. Abdel-Aziz, M. K. Saad, Computation of Smarandache Curves According to Darboux Frame in Minkowski 3-Space, Journal of the Egyptian Mathematical Society 25(4) (2017) 382–390.
- A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics 2 (2010) 30–36.
- O. Bektaş, S. Yüce, Special Smarandache Curves According to Darboux Frame in $E^3$, Romanian Journal of Mathematics and Computer Science 3(1) (2013) 48–59.
- M. Çetin, Y. Tuncer, M. K. Karacan, Smarandache Curves According to Bishop Frame in Euclidean 3-Space, General Mathematics Notes 20(2) (2014) 50–66.
- M. Elzawy, S. Mosa, Smarandache Curves in the Galilean 4-Space G4, Journal of the Egyptian Mathematical Society 25(1) (2017) 53–56.
- T. Kahraman, H. H. Uğurlu, Dual Smarandache Curves and Smarandache Ruled Surfaces, Mathematical Sciences and Applications E-Notes 2(1) (2014) 83–98.
- E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudohyperbolical Smarandache Curves in Minkowski 3-Space, International Journal of Mathematics and Mathematical Sciences Article ID 658670 (2013) 7 pages.
- E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudospherical Smarandache Curves in Minkowski 3-Space, Journal of Applied Mathematics Article ID 404521 (2014) 14 pages.
- M. Mak, H. Altınbas, Spacelike Smarandache Curves of Timelike Curves in Anti de Sitter 3-Space, International Journal of Mathematical Combinatorics 3 (2016) 1–16.
- U. Ozturk, E. B. Koc Ozturk, Smarandache Curves according to Curves on a Spacelike Surface in Minkowski 3-Space, Journal of Discrete Mathematics Article ID 829581 (2014) 10 pages.
- U. Ozturk, E. B. Koc Ozturk, K. İlarslan, E. Nešović, On Smarandache Curves Lying in Lightcone in Minkowski 3-Space, Journal of Dynamical Systems and Geometric Theories 12(1) (2014) 81–91.
- E. Solouma, Special Equiform Smarandache Curves in Minkowski Space-Time, Journal of the Egyptian Mathematical Society 25(3) (2017) 319–325.
- S. Şenyurt, Y. Altun, C. Cevahir, Smarandache Curves According to Sabban Frame Belonging to Mannheim Curves Pair, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68(1) (2019) 500–513.
- S. Şenyurt, C. Cevahir, Y. Altun, On the Smarandache Curves of Spatial Quaternionic Involute Curve, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 90(5) (2020) 827–837.
- S. Şenyurt, A. Çaliskan, U. Çelik, Smarandache Curves of Bertrand Curves Pair According to Frenet Frame, Boletim da Sociedade Paranaense de Matemàtica 39(5) (2021) 163–173.
- K. Taşköprü, M. Tosun, Smarandache Curves on $S^2$, Boletim da Sociedade Paranaense de Matem´atica 32(1) (2014) 51–59.
- M. Turgut, S. Yilmaz, Smarandache Curves in Minkowski Space-Time 3 (2008) 51–55.
- K. Nomizu, N. Katsumi, T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.
- U. Simon, Affine Differential Geometry, in: Handbook of Differential Geometry, Vol. 1, Elsevier, 2000, pp. 905–961.
- S. Buchin, Affine Differential Geometry, Gordon and Breach (China), 1983.
- N. Hu, Affine Geometry of Space Curves and Homogeneous Surfaces, PhD Dissertation, Department of Mathematics Graduate School of Science Hokkaaido University (2012) Japan.
- L. A. Santalò, A Geometrical Characterization for the Affine Differential Invariants of a Space Curve, Bulletin of the American Mathematical Society 52(8) (1946) 625–632.
- P. J. Olver, Moving Frames and Differential Invariants in Centro-Affine Geometry, Lobachevskii Journal of Mathematics 31(2) (2010) 77–89.
- Y. Tunçer, H. Kocayigit, M. K. Karacan, Indicatrices of Curves in Affine 3-Space, Palestine Journal of Mathematics 9(2) (2020) 858–865.
- Y. Tunçer, H. Kocayigit, M. K. Karacan, Naturel Mates of Equiaffine Space Curves in Affine 3-Space, Thermal Science 23(6) (2019) 2149–2157.
- Y. Tunçer, Position Vectors of the Curves in Affine 3-Space According to Special Affine Frames, International Journal of Mathematical Combinatorics 2 (2019) 43–59.