In this paper, we introduce a weak form of connectedness with respect to an ideal. We also investigate its relation to connectedness. We examine the I-connectedness property on the new topology introduced by the ideal. In addition, it is revealed under what conditions I-connectedness and connectedness coincide and one differs from another.
R. Vaidyanathaswamy, The Localisation Theory in Set Topology, Proceedings of the Indian Academy of Sciences 20 (1945) 51–61.
K. Kuratowski, Topology, Volume I, Academic Press, New York, 1966.
E. Ekici, T. Noiri, Connectedness in Ideal Topological Spaces, Novi Sad Journal of Mathematics 38 (2) (2008) 65–70.
N. Sathiyasundari, V. Renukadevi, Note on ∗-Connected Ideal Spaces, Novi Sad Journal of Mathematics 42 (1) (2012) 15–20.
S. Modak, T. Noiri, Connectedness of Ideal Topological Spaces, Filomat 29 (4) (2015) 661–665.
S. Kilinc, More on ∗∗-Connectedness, Matematichki Bilten 43 (2) (2019) 53–60.
B. K. Tyagi, M. Bhardwaj, S. Singh, Cl*-Connectedness and Cl-Cl*-Connectedness in Ideal Topological Spaces, Matematichki Bilten 42 (2) (2018) 91–100.
D. Jankovic, T. R. Hamlett, New Topologies from Old via Ideals, The American Mathematical Monthly 97(4) (1990) 295–310.
O. Njåstad, Remarks on Topologies Defined by Local Properties, Avhandlinger Norske Videnskaps-Akademi Oslo, Universitetsforlaget, 1966.
R. L. Newcomb, Topologies Which are Compact Modulo an Ideal, PhD Dissertation, University of California (1967) Santa Barbara, USA.
E. Ekici, T. Noiri, ∗-Hyperconnected Ideal Topological Spaces, Analele Stiintifice ale Universitatii Al I Cuza din lasi-Matematica, Tomul 58 (1) (2012) 121–129.
A. Keskin, S., Yüksel, T. Noiri, On I-Extremally Disconnected Spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 56 (1) (2007) 33–40.
R. Vaidyanathaswamy, The Localisation Theory in Set Topology, Proceedings of the Indian Academy of Sciences 20 (1945) 51–61.
K. Kuratowski, Topology, Volume I, Academic Press, New York, 1966.
E. Ekici, T. Noiri, Connectedness in Ideal Topological Spaces, Novi Sad Journal of Mathematics 38 (2) (2008) 65–70.
N. Sathiyasundari, V. Renukadevi, Note on ∗-Connected Ideal Spaces, Novi Sad Journal of Mathematics 42 (1) (2012) 15–20.
S. Modak, T. Noiri, Connectedness of Ideal Topological Spaces, Filomat 29 (4) (2015) 661–665.
S. Kilinc, More on ∗∗-Connectedness, Matematichki Bilten 43 (2) (2019) 53–60.
B. K. Tyagi, M. Bhardwaj, S. Singh, Cl*-Connectedness and Cl-Cl*-Connectedness in Ideal Topological Spaces, Matematichki Bilten 42 (2) (2018) 91–100.
D. Jankovic, T. R. Hamlett, New Topologies from Old via Ideals, The American Mathematical Monthly 97(4) (1990) 295–310.
O. Njåstad, Remarks on Topologies Defined by Local Properties, Avhandlinger Norske Videnskaps-Akademi Oslo, Universitetsforlaget, 1966.
R. L. Newcomb, Topologies Which are Compact Modulo an Ideal, PhD Dissertation, University of California (1967) Santa Barbara, USA.
E. Ekici, T. Noiri, ∗-Hyperconnected Ideal Topological Spaces, Analele Stiintifice ale Universitatii Al I Cuza din lasi-Matematica, Tomul 58 (1) (2012) 121–129.
A. Keskin, S., Yüksel, T. Noiri, On I-Extremally Disconnected Spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 56 (1) (2007) 33–40.