Research Article
BibTex RIS Cite

Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$

Year 2022, , 8 - 18, 30.06.2022
https://doi.org/10.53570/jnt.1106331

Abstract

The paper introduces a new kind of special ruled surface. The base of each ruled surface is taken to be one of the Smarandache curves of a given curve according to Frenet frame, and the generator (ruling) is chosen to be the corresponding unit Darboux vector. The characteristics of these newly defined ruled surfaces are investigated by means of first and second fundamental forms and their corresponding curvatures. An example is provided by considering both the helix curve and the Viviani’s curve.

Supporting Institution

None

Project Number

None

Thanks

We thank in advance to the blind reviewers for their time spent on our manuscript.

References

  • P. do-Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliff, 1976.
  • A. Gray E. Abbena, S. Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman and Hall/CRC, New York, 2017.
  • H. H. Hacısalihoğlu, Differential Geometry II, Ankara University Press, Ankara, 2000.
  • D. J. Struik, Lectures on classical differential geometry, Addison-Wesley Publishing Company, 1961.
  • M. Juza, Ligne De Striction Sur Unegeneralisation a Plusierurs Dimensions D’une Surface Regle, Czechoslovak Mathematical Journal 12 (1962) 243–250.
  • G. Y. Şentürk, S. Yüce, Characteristic Properties of Ruled Surface with Darboux Frame in $E^3$, Kuwait Journal of Science 42 (2) (2015) 14–33.
  • Y. Tunçer, Ruled Surfaces with the Bishop Frame in Euclidean 3 Space, General Mathematics Notes 26 (2015) 74–83.
  • M. Masal, A. Z. Azak, Ruled Surfaces according to Bishop Frame in the Euclidean 3-Space, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89 (2019) 415–424.
  • R. L. Bishop There is More Than One Way to Frame a Curve, The American Mathematical Monthly 82 (1975) 246–251.
  • S. Ouarab, A. O. Chahdi, M. Izid, Ruled Surfaces with Alternative Moving Frame in Euclidean 3-Space, International Journal of Mathematical Sciences and Engineering Applications 12 (2018) 43¬–58.
  • S. Ouarab, A. O. Chahdi, Some Characteristic Properties of Ruled Surface with Frenet Frame of an Arbitrary Non-Cylindrical Ruled Surface in Euclidean 3-Space, International Journal of Applied Physics and Mathematics 10 (1) (2020) 16–24.
  • M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski Spacetime, International Journal of Mathematical Combinatorics 3 (2008) 51–55.
  • A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics 2 (2010) 30–36.
  • S. Ouarab, Smarandache Ruled Surfaces according to Frenet-Serret Frame of a Regular Curve in $E^3$, Abstract and Applied Analysis Hindawi 2021 Article ID: 5526536.
  • S. Ouarab, Smarandache Ruled Surfaces according to Darboux Frame in E3, Journal of Mathematics 2021 Article ID: 9912624.
  • S. Ouarab, NC-Smarandache Ruled Surface and NW-Smarandache Ruled Surface according to Alternative Moving Frame in $E^3$, Journal of Mathematics 2021 Article ID: 9951434.
  • O. Bekta,s, S. Yüce, Special Smarandache Curves According to Darboux Frame in E3, Romanian Journal of Mathematics and Computer Science 3 (2013) 48–59.
  • A. Berk, A Structural Basis for Surface Discretization of Free Form Structures: Integration of Geometry, Materials and Fabrication, PhD Dissertation, Michigan University (2012) Ann Arbor, USA.
  • M. Çetin, H. Kocayiğit, On the Quaternionic Smarandache Curves in Euclidean 3-Space, International Journal of Contemporary Mathematical Sciences 8 (3) (2013) 139–150.
  • H. Pottmann, A. Asperl, M. Hofer, A. Killian, Architectural Geometry, Bentley Institute Press, Exton, 2007.
  • S. Şenyurt, S. Sivas, An Application of Smarandache Curve, Ordu University Journal of Science and Tecnology 3 (1) (2013) 46–60.
  • J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, Springer, New York, 2010.
  • K. Taşköprü, M. Tosun, Smarandache Curves on S2, Boletim da Sociedade Paranaense de Matematica 32 (1) (2014) 51–59.
Year 2022, , 8 - 18, 30.06.2022
https://doi.org/10.53570/jnt.1106331

Abstract

Project Number

None

References

  • P. do-Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliff, 1976.
  • A. Gray E. Abbena, S. Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman and Hall/CRC, New York, 2017.
  • H. H. Hacısalihoğlu, Differential Geometry II, Ankara University Press, Ankara, 2000.
  • D. J. Struik, Lectures on classical differential geometry, Addison-Wesley Publishing Company, 1961.
  • M. Juza, Ligne De Striction Sur Unegeneralisation a Plusierurs Dimensions D’une Surface Regle, Czechoslovak Mathematical Journal 12 (1962) 243–250.
  • G. Y. Şentürk, S. Yüce, Characteristic Properties of Ruled Surface with Darboux Frame in $E^3$, Kuwait Journal of Science 42 (2) (2015) 14–33.
  • Y. Tunçer, Ruled Surfaces with the Bishop Frame in Euclidean 3 Space, General Mathematics Notes 26 (2015) 74–83.
  • M. Masal, A. Z. Azak, Ruled Surfaces according to Bishop Frame in the Euclidean 3-Space, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 89 (2019) 415–424.
  • R. L. Bishop There is More Than One Way to Frame a Curve, The American Mathematical Monthly 82 (1975) 246–251.
  • S. Ouarab, A. O. Chahdi, M. Izid, Ruled Surfaces with Alternative Moving Frame in Euclidean 3-Space, International Journal of Mathematical Sciences and Engineering Applications 12 (2018) 43¬–58.
  • S. Ouarab, A. O. Chahdi, Some Characteristic Properties of Ruled Surface with Frenet Frame of an Arbitrary Non-Cylindrical Ruled Surface in Euclidean 3-Space, International Journal of Applied Physics and Mathematics 10 (1) (2020) 16–24.
  • M. Turgut, S. Yılmaz, Smarandache Curves in Minkowski Spacetime, International Journal of Mathematical Combinatorics 3 (2008) 51–55.
  • A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics 2 (2010) 30–36.
  • S. Ouarab, Smarandache Ruled Surfaces according to Frenet-Serret Frame of a Regular Curve in $E^3$, Abstract and Applied Analysis Hindawi 2021 Article ID: 5526536.
  • S. Ouarab, Smarandache Ruled Surfaces according to Darboux Frame in E3, Journal of Mathematics 2021 Article ID: 9912624.
  • S. Ouarab, NC-Smarandache Ruled Surface and NW-Smarandache Ruled Surface according to Alternative Moving Frame in $E^3$, Journal of Mathematics 2021 Article ID: 9951434.
  • O. Bekta,s, S. Yüce, Special Smarandache Curves According to Darboux Frame in E3, Romanian Journal of Mathematics and Computer Science 3 (2013) 48–59.
  • A. Berk, A Structural Basis for Surface Discretization of Free Form Structures: Integration of Geometry, Materials and Fabrication, PhD Dissertation, Michigan University (2012) Ann Arbor, USA.
  • M. Çetin, H. Kocayiğit, On the Quaternionic Smarandache Curves in Euclidean 3-Space, International Journal of Contemporary Mathematical Sciences 8 (3) (2013) 139–150.
  • H. Pottmann, A. Asperl, M. Hofer, A. Killian, Architectural Geometry, Bentley Institute Press, Exton, 2007.
  • S. Şenyurt, S. Sivas, An Application of Smarandache Curve, Ordu University Journal of Science and Tecnology 3 (1) (2013) 46–60.
  • J. Stillwell, Mathematics and Its History, Undergraduate Texts in Mathematics, Springer, New York, 2010.
  • K. Taşköprü, M. Tosun, Smarandache Curves on S2, Boletim da Sociedade Paranaense de Matematica 32 (1) (2014) 51–59.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Süleyman Şenyurt 0000-0003-1097-5541

Davut Canlı 0000-0003-0405-9969

Elif Çan This is me 0000-0001-5870-114X

Project Number None
Publication Date June 30, 2022
Submission Date April 20, 2022
Published in Issue Year 2022

Cite

APA Şenyurt, S., Canlı, D., & Çan, E. (2022). Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$. Journal of New Theory(39), 8-18. https://doi.org/10.53570/jnt.1106331
AMA Şenyurt S, Canlı D, Çan E. Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$. JNT. June 2022;(39):8-18. doi:10.53570/jnt.1106331
Chicago Şenyurt, Süleyman, Davut Canlı, and Elif Çan. “Smarandache-Based Ruled Surfaces With the Darboux Vector According to Frenet Frame in $E^3$”. Journal of New Theory, no. 39 (June 2022): 8-18. https://doi.org/10.53570/jnt.1106331.
EndNote Şenyurt S, Canlı D, Çan E (June 1, 2022) Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$. Journal of New Theory 39 8–18.
IEEE S. Şenyurt, D. Canlı, and E. Çan, “Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$”, JNT, no. 39, pp. 8–18, June 2022, doi: 10.53570/jnt.1106331.
ISNAD Şenyurt, Süleyman et al. “Smarandache-Based Ruled Surfaces With the Darboux Vector According to Frenet Frame in $E^3$”. Journal of New Theory 39 (June 2022), 8-18. https://doi.org/10.53570/jnt.1106331.
JAMA Şenyurt S, Canlı D, Çan E. Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$. JNT. 2022;:8–18.
MLA Şenyurt, Süleyman et al. “Smarandache-Based Ruled Surfaces With the Darboux Vector According to Frenet Frame in $E^3$”. Journal of New Theory, no. 39, 2022, pp. 8-18, doi:10.53570/jnt.1106331.
Vancouver Şenyurt S, Canlı D, Çan E. Smarandache-Based Ruled Surfaces with the Darboux Vector According to Frenet Frame in $E^3$. JNT. 2022(39):8-18.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).