Year 2022,
, 84 - 93, 30.06.2022
Hemant Kumar
,
M Pathan
,
Frederic Ayant
References
- S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, Springer, Switzerland, 2016.
- S. R. Hanna, Review of Atmospheric Diffusion Models for Regulatory Applications, World Meteorological Organization (WMO), Technical Note No. 177, WMO No. 581, Geneva, Switzerland, 1982.
- S. R. Hanna, G. A. Briggs, R. P. Hosker, Handbook on Atmospheric Diffusion, Technical Information Center U. S. Department of Energy, Technical Report No. DOE/TIC-11223, United States, 1982.
- R. M. Harrison, R. Perry, Handbook of Air Pollution Analysis, Chapman and Hall and Methuen, New York, 1986.
- T. J. Lyons, W. D. Scott, Principles of Air Pollution Meteorology, CBS Publishers and Distributers, New Delhi, 1992.
- F. Liu, I. Turner, V. Anh, An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coatal Aquifer, Korean Journal of Computational & Applied Mathematics 9 (2002) 391–407.
- F. Liu, I. Turner, V. Anh, N. Su, A Two-dimensional Finite Volume Method for Transient Simulation of Time- and Scale-dependent Transport in Heterogeneous Aquifer Systems, Journal of Applied Mathematics and Computing 11 (2003) 215–241.
- H. Kumar, On Three Dimensional Legendre Sturm Liouville Diffusion and Wave Problem Generated due to Fractional Derivative, Jnanabha 48 (1) (2018) 129–141.
- H. Kumar, S. K. Rai, On a Fractional Time Derivative and Multi-dimensional Space Evolution Bessel Sturm Liouville Diffusion and Wave Problem, Jnanabha Special Issue (2018) 61–71.
- H. Kumar, M. A. Pathan, S. K. Rai, On Certain Solutions of a Generalized Perl’s Vector Equation Involving Fractional Time Derivative, Montes Taurus Journal of Pure and Applied Mathematics 1 (2) (2019) 42–57.
- H. Kumar, S. K. Rai, Multiple Fractional Diffusions via Multivariable H-function, Jnanabha 50 (1) (2020) 253–264. [12] H. Hochstadt, The Functions of Mathematical Physics, Dover Publications, New York, 1986.
- H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, John Wiley and Sons, New York, 1984.
- H. Kumar, S. P. S. Yadav, Application of Generalized Polynomials of Several Variables and Multivariable H-function in One Dimensional Advective Diffusion Problem, Bulletin of Pure and Applied Mathematics 4 (2) (2010) 353–362.
- H. Kumar, M. A. Pathan, S. K. Rai, Obtaining Voigt Functions via Quadrature Formula for the Fractional in Time Diffusion and Wave Problem, Kragujevac Journal of Mathematics 46 (5) (2022) 759–772.
- H. Kumar, H. Srivastava, S. K. Rai, On a Bi Dimensional Basis Involving Special Functions for Partial in Space and the Time Fractional Wave Mechanical Problems and Approximation, Jnanabha 47 (2) (2017) 291–300.
Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients
Year 2022,
, 84 - 93, 30.06.2022
Hemant Kumar
,
M Pathan
,
Frederic Ayant
Abstract
In this paper, we obtain certain distribution formulae of the solute in transport of the typical advection-dispersion of air pollution through separation in two-dimensional space variables by introducing different wind velocities and dispersion coefficients. As a consequence, by introducing different values of the solute velocity and dispersion coefficients, we evaluate the solute distribution formulae of the air pollution in terms of various known and unknown special functions.
References
- S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, Springer, Switzerland, 2016.
- S. R. Hanna, Review of Atmospheric Diffusion Models for Regulatory Applications, World Meteorological Organization (WMO), Technical Note No. 177, WMO No. 581, Geneva, Switzerland, 1982.
- S. R. Hanna, G. A. Briggs, R. P. Hosker, Handbook on Atmospheric Diffusion, Technical Information Center U. S. Department of Energy, Technical Report No. DOE/TIC-11223, United States, 1982.
- R. M. Harrison, R. Perry, Handbook of Air Pollution Analysis, Chapman and Hall and Methuen, New York, 1986.
- T. J. Lyons, W. D. Scott, Principles of Air Pollution Meteorology, CBS Publishers and Distributers, New Delhi, 1992.
- F. Liu, I. Turner, V. Anh, An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coatal Aquifer, Korean Journal of Computational & Applied Mathematics 9 (2002) 391–407.
- F. Liu, I. Turner, V. Anh, N. Su, A Two-dimensional Finite Volume Method for Transient Simulation of Time- and Scale-dependent Transport in Heterogeneous Aquifer Systems, Journal of Applied Mathematics and Computing 11 (2003) 215–241.
- H. Kumar, On Three Dimensional Legendre Sturm Liouville Diffusion and Wave Problem Generated due to Fractional Derivative, Jnanabha 48 (1) (2018) 129–141.
- H. Kumar, S. K. Rai, On a Fractional Time Derivative and Multi-dimensional Space Evolution Bessel Sturm Liouville Diffusion and Wave Problem, Jnanabha Special Issue (2018) 61–71.
- H. Kumar, M. A. Pathan, S. K. Rai, On Certain Solutions of a Generalized Perl’s Vector Equation Involving Fractional Time Derivative, Montes Taurus Journal of Pure and Applied Mathematics 1 (2) (2019) 42–57.
- H. Kumar, S. K. Rai, Multiple Fractional Diffusions via Multivariable H-function, Jnanabha 50 (1) (2020) 253–264. [12] H. Hochstadt, The Functions of Mathematical Physics, Dover Publications, New York, 1986.
- H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, John Wiley and Sons, New York, 1984.
- H. Kumar, S. P. S. Yadav, Application of Generalized Polynomials of Several Variables and Multivariable H-function in One Dimensional Advective Diffusion Problem, Bulletin of Pure and Applied Mathematics 4 (2) (2010) 353–362.
- H. Kumar, M. A. Pathan, S. K. Rai, Obtaining Voigt Functions via Quadrature Formula for the Fractional in Time Diffusion and Wave Problem, Kragujevac Journal of Mathematics 46 (5) (2022) 759–772.
- H. Kumar, H. Srivastava, S. K. Rai, On a Bi Dimensional Basis Involving Special Functions for Partial in Space and the Time Fractional Wave Mechanical Problems and Approximation, Jnanabha 47 (2) (2017) 291–300.