Research Article
BibTex RIS Cite
Year 2022, , 84 - 93, 30.06.2022
https://doi.org/10.53570/jnt.1129890

Abstract

References

  • S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, Springer, Switzerland, 2016.
  • S. R. Hanna, Review of Atmospheric Diffusion Models for Regulatory Applications, World Meteorological Organization (WMO), Technical Note No. 177, WMO No. 581, Geneva, Switzerland, 1982.
  • S. R. Hanna, G. A. Briggs, R. P. Hosker, Handbook on Atmospheric Diffusion, Technical Information Center U. S. Department of Energy, Technical Report No. DOE/TIC-11223, United States, 1982.
  • R. M. Harrison, R. Perry, Handbook of Air Pollution Analysis, Chapman and Hall and Methuen, New York, 1986.
  • T. J. Lyons, W. D. Scott, Principles of Air Pollution Meteorology, CBS Publishers and Distributers, New Delhi, 1992.
  • F. Liu, I. Turner, V. Anh, An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coatal Aquifer, Korean Journal of Computational & Applied Mathematics 9 (2002) 391–407.
  • F. Liu, I. Turner, V. Anh, N. Su, A Two-dimensional Finite Volume Method for Transient Simulation of Time- and Scale-dependent Transport in Heterogeneous Aquifer Systems, Journal of Applied Mathematics and Computing 11 (2003) 215–241.
  • H. Kumar, On Three Dimensional Legendre Sturm Liouville Diffusion and Wave Problem Generated due to Fractional Derivative, Jnanabha 48 (1) (2018) 129–141.
  • H. Kumar, S. K. Rai, On a Fractional Time Derivative and Multi-dimensional Space Evolution Bessel Sturm Liouville Diffusion and Wave Problem, Jnanabha Special Issue (2018) 61–71.
  • H. Kumar, M. A. Pathan, S. K. Rai, On Certain Solutions of a Generalized Perl’s Vector Equation Involving Fractional Time Derivative, Montes Taurus Journal of Pure and Applied Mathematics 1 (2) (2019) 42–57.
  • H. Kumar, S. K. Rai, Multiple Fractional Diffusions via Multivariable H-function, Jnanabha 50 (1) (2020) 253–264. [12] H. Hochstadt, The Functions of Mathematical Physics, Dover Publications, New York, 1986.
  • H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, John Wiley and Sons, New York, 1984.
  • H. Kumar, S. P. S. Yadav, Application of Generalized Polynomials of Several Variables and Multivariable H-function in One Dimensional Advective Diffusion Problem, Bulletin of Pure and Applied Mathematics 4 (2) (2010) 353–362.
  • H. Kumar, M. A. Pathan, S. K. Rai, Obtaining Voigt Functions via Quadrature Formula for the Fractional in Time Diffusion and Wave Problem, Kragujevac Journal of Mathematics 46 (5) (2022) 759–772.
  • H. Kumar, H. Srivastava, S. K. Rai, On a Bi Dimensional Basis Involving Special Functions for Partial in Space and the Time Fractional Wave Mechanical Problems and Approximation, Jnanabha 47 (2) (2017) 291–300.

Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients

Year 2022, , 84 - 93, 30.06.2022
https://doi.org/10.53570/jnt.1129890

Abstract

In this paper, we obtain certain distribution formulae of the solute in transport of the typical advection-dispersion of air pollution through separation in two-dimensional space variables by introducing different wind velocities and dispersion coefficients. As a consequence, by introducing different values of the solute velocity and dispersion coefficients, we evaluate the solute distribution formulae of the air pollution in terms of various known and unknown special functions.

References

  • S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, Springer, Switzerland, 2016.
  • S. R. Hanna, Review of Atmospheric Diffusion Models for Regulatory Applications, World Meteorological Organization (WMO), Technical Note No. 177, WMO No. 581, Geneva, Switzerland, 1982.
  • S. R. Hanna, G. A. Briggs, R. P. Hosker, Handbook on Atmospheric Diffusion, Technical Information Center U. S. Department of Energy, Technical Report No. DOE/TIC-11223, United States, 1982.
  • R. M. Harrison, R. Perry, Handbook of Air Pollution Analysis, Chapman and Hall and Methuen, New York, 1986.
  • T. J. Lyons, W. D. Scott, Principles of Air Pollution Meteorology, CBS Publishers and Distributers, New Delhi, 1992.
  • F. Liu, I. Turner, V. Anh, An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coatal Aquifer, Korean Journal of Computational & Applied Mathematics 9 (2002) 391–407.
  • F. Liu, I. Turner, V. Anh, N. Su, A Two-dimensional Finite Volume Method for Transient Simulation of Time- and Scale-dependent Transport in Heterogeneous Aquifer Systems, Journal of Applied Mathematics and Computing 11 (2003) 215–241.
  • H. Kumar, On Three Dimensional Legendre Sturm Liouville Diffusion and Wave Problem Generated due to Fractional Derivative, Jnanabha 48 (1) (2018) 129–141.
  • H. Kumar, S. K. Rai, On a Fractional Time Derivative and Multi-dimensional Space Evolution Bessel Sturm Liouville Diffusion and Wave Problem, Jnanabha Special Issue (2018) 61–71.
  • H. Kumar, M. A. Pathan, S. K. Rai, On Certain Solutions of a Generalized Perl’s Vector Equation Involving Fractional Time Derivative, Montes Taurus Journal of Pure and Applied Mathematics 1 (2) (2019) 42–57.
  • H. Kumar, S. K. Rai, Multiple Fractional Diffusions via Multivariable H-function, Jnanabha 50 (1) (2020) 253–264. [12] H. Hochstadt, The Functions of Mathematical Physics, Dover Publications, New York, 1986.
  • H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, John Wiley and Sons, New York, 1984.
  • H. Kumar, S. P. S. Yadav, Application of Generalized Polynomials of Several Variables and Multivariable H-function in One Dimensional Advective Diffusion Problem, Bulletin of Pure and Applied Mathematics 4 (2) (2010) 353–362.
  • H. Kumar, M. A. Pathan, S. K. Rai, Obtaining Voigt Functions via Quadrature Formula for the Fractional in Time Diffusion and Wave Problem, Kragujevac Journal of Mathematics 46 (5) (2022) 759–772.
  • H. Kumar, H. Srivastava, S. K. Rai, On a Bi Dimensional Basis Involving Special Functions for Partial in Space and the Time Fractional Wave Mechanical Problems and Approximation, Jnanabha 47 (2) (2017) 291–300.
There are 15 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Article
Authors

Hemant Kumar 0000-0002-9369-6152

M Pathan 0000-0003-3918-7901

Frederic Ayant 0000-0003-0651-294X

Publication Date June 30, 2022
Submission Date June 13, 2022
Published in Issue Year 2022

Cite

APA Kumar, H., Pathan, M., & Ayant, F. (2022). Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients. Journal of New Theory(39), 84-93. https://doi.org/10.53570/jnt.1129890
AMA Kumar H, Pathan M, Ayant F. Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients. JNT. June 2022;(39):84-93. doi:10.53570/jnt.1129890
Chicago Kumar, Hemant, M Pathan, and Frederic Ayant. “Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients”. Journal of New Theory, no. 39 (June 2022): 84-93. https://doi.org/10.53570/jnt.1129890.
EndNote Kumar H, Pathan M, Ayant F (June 1, 2022) Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients. Journal of New Theory 39 84–93.
IEEE H. Kumar, M. Pathan, and F. Ayant, “Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients”, JNT, no. 39, pp. 84–93, June 2022, doi: 10.53570/jnt.1129890.
ISNAD Kumar, Hemant et al. “Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients”. Journal of New Theory 39 (June 2022), 84-93. https://doi.org/10.53570/jnt.1129890.
JAMA Kumar H, Pathan M, Ayant F. Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients. JNT. 2022;:84–93.
MLA Kumar, Hemant et al. “Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients”. Journal of New Theory, no. 39, 2022, pp. 84-93, doi:10.53570/jnt.1129890.
Vancouver Kumar H, Pathan M, Ayant F. Distribution Formulae of the Solute in Transport of Advection-Dispersion of Air Pollution for Different Wind Velocities and Dispersion Coefficients. JNT. 2022(39):84-93.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).