Research Article
BibTex RIS Cite
Year 2022, , 94 - 99, 31.12.2022
https://doi.org/10.53570/jnt.1185603

Abstract

References

  • H. Bor, H. S. Özarslan, A Note on Absolute Summability Factors, Advanced Studies in Contemporary Mathematics 6(1) (2003) 1{--}11.
  • H. S. Özarslan, A Note on Absolute Summability Factors, Proceedings of the Indian Academy of Sciences 113(2) (2003) 165{--}169.
  • H. Bor, H. S. Özarslan, On the Quasi-Monotone and Almost Increasing Sequences, Journal of Mathematical Inequalities 1(4) (2007) 529{--}534.
  • H. Bor, H. S. Özarslan, A New Application of Quasi-Monotone and Almost Increasing Sequences, Journal of Computational Analysis and Applications 13(5) (2011) 886{--}891.
  • H. S. Özarslan, Absolute Cesàro Summability Factors, Journal of Concrete and Applicable Mathematics 5(3) (2007) 231{--}236.
  • H. S. Özarslan, On Absolute Cesàro Summability Factors of Infinite Series, Communications in Mathematical Analysis 3(1) (2007) 53{--}56.
  • H. S. Özarslan, A Note on Generalized Absolute Cesàro Summability, Journal of Computational Analysis and Applications 12(3) (2010) 581{--}585.
  • H. S. Özarslan, A Note on Generalized Absolute Cesàro Summability, Advances in Pure and Applied Mathematics 5(1) (2014) 1{--}3.
  • H. S. Özarslan, On the Generalized Absolute Cesàro Summability Methods, Russian Mathematics 65 (2021) 29{--}33.
  • H. Bor, A New Factor Theorem on Generalized Absolute Cesàro Summability, Quaestiones Mathematicae 44(5) (2021) 653{--}658.
  • B. Kartal, An Extension of a Theorem on Cesàro Summability, Numerical Functional Analysis and Optimization 42(4) (2021) 474{--}479.
  • B. Kartal, New Results for Almost Increasing Sequences, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 18 (2019) 85{--}91.
  • B. Kartal, A Theorem on Absolute Summability of Infinite Series, Cumhuriyet Science Journal 40(3) (2019) 563{--}569.
  • H. Bor, R. P. Agarwal, A New Application of Almost Increasing Sequences to Factored Infinite Series, Analysis and Mathematical Physics 10 Article Number 26 (2020) 7 pages.
  • B. Kartal, An Application of Almost Increasing Sequences, Russian Mathematics 65 (2021) 14{--}17.
  • H. Bor, H. M. Srivastava, W.T. Sulaiman, A New Application of Certain Generalized Power Increasing Sequences, Filomat 26(4) (2012) 871{--}879.
  • H. S. Özarslan, On a New Application of Quasi Power Increasing Sequences, Journal of Applied Mathematics and Informatics (39)3-4 (2021) 321{--}326.
  • H. S. Özarslan, M.Ö. Şakar, A New Application of $(\phi, \delta)$ Monotone Sequences, Russian Mathematics 3 (2022) 38{--}43.
  • E. Cesàro, Sur la Multiplication des S\'{e}ries, Bulletin des Sciences Mathematiques 14 (1890) 114{--}120.
  • T. Pati, The Summability Factors of Infinite Series, Duke Mathematical Journal 21 (1954) 271{--}283.
  • H. Seyhan, On the Generalized Ces\`aro Summability Factors, Acta et Commentationes Universitatis Tartuensis de Mathematica 3 (1999) 3{--}6.
  • T. M. Flett, On an Extension of Absolute Summability and Some Theorems of Littlewood and Paley, Proceedings of the London Mathematical Society (3)7 (1957) 113{--}141.
  • R. P. Boas (Jr.), Quasi-Positive Sequences and Trigonometric Series, Proceedings of the London Mathematical Society (3)14A (1965) 38{--}46.
  • N. K. Bari, S. B. Ste$\check{c}$kin, Best Approximations and Differential Proprerties of Two Conjugate Functions (in Russian), Trudy Moskovskogo Matematicheskogo Obshchestva 5 (1956) 483{--}522.
  • L. S. Bosanquet, A Mean Value Theorem, Journal of the London Mathematical Society 16 (1941) 146{--}148.
  • H. Bor, Corrigendum on the Paper ``An Application of Almost Increasing and $\delta$-Quasi-Monotone Sequences", Journal of Inequalities in Pure and Applied Mathematics 3 (1) Article Number 16 (2002) 2 pages.
  • H. Bor, Quasimonotone and Almost Increasing Sequences and Their New Applications, Abstract and Applied Analysis Article ID 793548 (2012) 6 pages.

Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences

Year 2022, , 94 - 99, 31.12.2022
https://doi.org/10.53570/jnt.1185603

Abstract

This paper generalises a well-known theorem on ${\mid{C},\rho\mid}_\kappa$ summability to the $\varphi-{\mid{C},\rho;\beta\mid}_\kappa$ summability of an infinite series using an almost increasing and a $\delta$-quasi monotone sequence.

References

  • H. Bor, H. S. Özarslan, A Note on Absolute Summability Factors, Advanced Studies in Contemporary Mathematics 6(1) (2003) 1{--}11.
  • H. S. Özarslan, A Note on Absolute Summability Factors, Proceedings of the Indian Academy of Sciences 113(2) (2003) 165{--}169.
  • H. Bor, H. S. Özarslan, On the Quasi-Monotone and Almost Increasing Sequences, Journal of Mathematical Inequalities 1(4) (2007) 529{--}534.
  • H. Bor, H. S. Özarslan, A New Application of Quasi-Monotone and Almost Increasing Sequences, Journal of Computational Analysis and Applications 13(5) (2011) 886{--}891.
  • H. S. Özarslan, Absolute Cesàro Summability Factors, Journal of Concrete and Applicable Mathematics 5(3) (2007) 231{--}236.
  • H. S. Özarslan, On Absolute Cesàro Summability Factors of Infinite Series, Communications in Mathematical Analysis 3(1) (2007) 53{--}56.
  • H. S. Özarslan, A Note on Generalized Absolute Cesàro Summability, Journal of Computational Analysis and Applications 12(3) (2010) 581{--}585.
  • H. S. Özarslan, A Note on Generalized Absolute Cesàro Summability, Advances in Pure and Applied Mathematics 5(1) (2014) 1{--}3.
  • H. S. Özarslan, On the Generalized Absolute Cesàro Summability Methods, Russian Mathematics 65 (2021) 29{--}33.
  • H. Bor, A New Factor Theorem on Generalized Absolute Cesàro Summability, Quaestiones Mathematicae 44(5) (2021) 653{--}658.
  • B. Kartal, An Extension of a Theorem on Cesàro Summability, Numerical Functional Analysis and Optimization 42(4) (2021) 474{--}479.
  • B. Kartal, New Results for Almost Increasing Sequences, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 18 (2019) 85{--}91.
  • B. Kartal, A Theorem on Absolute Summability of Infinite Series, Cumhuriyet Science Journal 40(3) (2019) 563{--}569.
  • H. Bor, R. P. Agarwal, A New Application of Almost Increasing Sequences to Factored Infinite Series, Analysis and Mathematical Physics 10 Article Number 26 (2020) 7 pages.
  • B. Kartal, An Application of Almost Increasing Sequences, Russian Mathematics 65 (2021) 14{--}17.
  • H. Bor, H. M. Srivastava, W.T. Sulaiman, A New Application of Certain Generalized Power Increasing Sequences, Filomat 26(4) (2012) 871{--}879.
  • H. S. Özarslan, On a New Application of Quasi Power Increasing Sequences, Journal of Applied Mathematics and Informatics (39)3-4 (2021) 321{--}326.
  • H. S. Özarslan, M.Ö. Şakar, A New Application of $(\phi, \delta)$ Monotone Sequences, Russian Mathematics 3 (2022) 38{--}43.
  • E. Cesàro, Sur la Multiplication des S\'{e}ries, Bulletin des Sciences Mathematiques 14 (1890) 114{--}120.
  • T. Pati, The Summability Factors of Infinite Series, Duke Mathematical Journal 21 (1954) 271{--}283.
  • H. Seyhan, On the Generalized Ces\`aro Summability Factors, Acta et Commentationes Universitatis Tartuensis de Mathematica 3 (1999) 3{--}6.
  • T. M. Flett, On an Extension of Absolute Summability and Some Theorems of Littlewood and Paley, Proceedings of the London Mathematical Society (3)7 (1957) 113{--}141.
  • R. P. Boas (Jr.), Quasi-Positive Sequences and Trigonometric Series, Proceedings of the London Mathematical Society (3)14A (1965) 38{--}46.
  • N. K. Bari, S. B. Ste$\check{c}$kin, Best Approximations and Differential Proprerties of Two Conjugate Functions (in Russian), Trudy Moskovskogo Matematicheskogo Obshchestva 5 (1956) 483{--}522.
  • L. S. Bosanquet, A Mean Value Theorem, Journal of the London Mathematical Society 16 (1941) 146{--}148.
  • H. Bor, Corrigendum on the Paper ``An Application of Almost Increasing and $\delta$-Quasi-Monotone Sequences", Journal of Inequalities in Pure and Applied Mathematics 3 (1) Article Number 16 (2002) 2 pages.
  • H. Bor, Quasimonotone and Almost Increasing Sequences and Their New Applications, Abstract and Applied Analysis Article ID 793548 (2012) 6 pages.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Bağdagül Kartal 0000-0001-6223-0838

Publication Date December 31, 2022
Submission Date October 7, 2022
Published in Issue Year 2022

Cite

APA Kartal, B. (2022). Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences. Journal of New Theory(41), 94-99. https://doi.org/10.53570/jnt.1185603
AMA Kartal B. Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences. JNT. December 2022;(41):94-99. doi:10.53570/jnt.1185603
Chicago Kartal, Bağdagül. “Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences”. Journal of New Theory, no. 41 (December 2022): 94-99. https://doi.org/10.53570/jnt.1185603.
EndNote Kartal B (December 1, 2022) Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences. Journal of New Theory 41 94–99.
IEEE B. Kartal, “Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences”, JNT, no. 41, pp. 94–99, December 2022, doi: 10.53570/jnt.1185603.
ISNAD Kartal, Bağdagül. “Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences”. Journal of New Theory 41 (December 2022), 94-99. https://doi.org/10.53570/jnt.1185603.
JAMA Kartal B. Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences. JNT. 2022;:94–99.
MLA Kartal, Bağdagül. “Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences”. Journal of New Theory, no. 41, 2022, pp. 94-99, doi:10.53570/jnt.1185603.
Vancouver Kartal B. Cesàro Summability Involving $\delta$-Quasi-Monotone and Almost Increasing Sequences. JNT. 2022(41):94-9.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).