Research Article
BibTex RIS Cite

Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes

Year 2022, Issue: 41, 105 - 122, 31.12.2022
https://doi.org/10.53570/jnt.1202341

Abstract

In this study, we worked on the third-order bivariate variant of the Fibonacci universal code and the second-order bivariate variant of the Narayana universal code, depending on two negative integer variables u and v. We then showed in tables these codes for 1≤k≤100, u=-1,-2,…,-20, and v=-2,-3,…,-21 (u and v are consecutive, v$<$u). Moreover, we obtained some significant results from these tables. Furthermore, we compared the use of these codes in cryptography. Finally, we obtained the third-order bivariate variant of Fibonacci codes is more valuable than the second-order bivariate variant of Narayana codes.

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
  • M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly 1 (1963) 71–74.
  • J. H. Thomas, Variations on the Fibonacci Universal Code. arXiv:0701085 (2007).
  • S. Kak, The Golden Mean and the Physics of Aesthetics, in: B. Yadav, M. Mohan (Eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, 2011, pp. 111–119.
  • K. Kirthi, S. Kak, The Narayana Universal Code, arXiv: 1601.07110 (2016).
  • T. Buschmann, L.V. Bystrykh, Levenshtein Error-Correcting Barcodes for Multiplexed DNA Sequencing, BMC Bioinformatics 14 (1) (2013) 272.
  • E. Zeckendorf, Representation Des Nombres Naturels Par Une Somme Des Nombres De Fibonacci Ou De Nombres De Lucas, Bulletin De La Society Royale des Sciences de Liege 41 (1972) 179–182.
  • S. T. Klein, M. K. Ben-Nissan, On the Usefulness of Fibonacci Compression Codes, The Computer Journal 53 (6) (2010) 701–716.
  • M. Basu, B. Prasad, Long Range Variant of Fibonacci Universal Code, Journal of Number Theory 130 (2010) 1925–1931.
  • A. Nallı, Ç. Özyılmaz, The Third order Variations on the Fibonacci Universal Code, Journal of Number Theory 149 (2015) 15–32.
  • D.E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, Journal of London Mathematical Society 35 (1960) 143–160.
  • M. Basu, M. Das, Uses of Second Order Variant Fibonacci Universal Code in Cryptography, Control and Cybernetics 45 (2) (2016) 239–257.
  • M. Das, S. Sinha, A Variant of the Narayana Coding Scheme, Control and Cybernetics 48 (3) (2019) 473–484.
  • C. Çimen, S. Akleylek, E. Akyıldız, Şifrelerin Matematiği Kriptografi, ODTÜ Press Ankara, 2007.
  • D. R. Stinson, Cryptography Theory and Practice, Chapman & Hall, Ohio, CRC Press, 2002.

Year 2022, Issue: 41, 105 - 122, 31.12.2022
https://doi.org/10.53570/jnt.1202341

Abstract

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
  • M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly 1 (1963) 71–74.
  • J. H. Thomas, Variations on the Fibonacci Universal Code. arXiv:0701085 (2007).
  • S. Kak, The Golden Mean and the Physics of Aesthetics, in: B. Yadav, M. Mohan (Eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, 2011, pp. 111–119.
  • K. Kirthi, S. Kak, The Narayana Universal Code, arXiv: 1601.07110 (2016).
  • T. Buschmann, L.V. Bystrykh, Levenshtein Error-Correcting Barcodes for Multiplexed DNA Sequencing, BMC Bioinformatics 14 (1) (2013) 272.
  • E. Zeckendorf, Representation Des Nombres Naturels Par Une Somme Des Nombres De Fibonacci Ou De Nombres De Lucas, Bulletin De La Society Royale des Sciences de Liege 41 (1972) 179–182.
  • S. T. Klein, M. K. Ben-Nissan, On the Usefulness of Fibonacci Compression Codes, The Computer Journal 53 (6) (2010) 701–716.
  • M. Basu, B. Prasad, Long Range Variant of Fibonacci Universal Code, Journal of Number Theory 130 (2010) 1925–1931.
  • A. Nallı, Ç. Özyılmaz, The Third order Variations on the Fibonacci Universal Code, Journal of Number Theory 149 (2015) 15–32.
  • D.E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, Journal of London Mathematical Society 35 (1960) 143–160.
  • M. Basu, M. Das, Uses of Second Order Variant Fibonacci Universal Code in Cryptography, Control and Cybernetics 45 (2) (2016) 239–257.
  • M. Das, S. Sinha, A Variant of the Narayana Coding Scheme, Control and Cybernetics 48 (3) (2019) 473–484.
  • C. Çimen, S. Akleylek, E. Akyıldız, Şifrelerin Matematiği Kriptografi, ODTÜ Press Ankara, 2007.
  • D. R. Stinson, Cryptography Theory and Practice, Chapman & Hall, Ohio, CRC Press, 2002.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Çağla Çelemoğlu 0000-0003-0572-8132

Submission Date November 10, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Issue: 41

Cite

APA Çelemoğlu, Ç. (2022). Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. Journal of New Theory, 41, 105-122. https://doi.org/10.53570/jnt.1202341
AMA 1.Çelemoğlu Ç. Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. JNT. 2022;(41):105-122. doi:10.53570/jnt.1202341
Chicago Çelemoğlu, Çağla. 2022. “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”. Journal of New Theory, nos. 41: 105-22. https://doi.org/10.53570/jnt.1202341.
EndNote Çelemoğlu Ç (December 1, 2022) Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. Journal of New Theory 41 105–122.
IEEE [1]Ç. Çelemoğlu, “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”, JNT, no. 41, pp. 105–122, Dec. 2022, doi: 10.53570/jnt.1202341.
ISNAD Çelemoğlu, Çağla. “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”. Journal of New Theory. 41 (December 1, 2022): 105-122. https://doi.org/10.53570/jnt.1202341.
JAMA 1.Çelemoğlu Ç. Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. JNT. 2022;:105–122.
MLA Çelemoğlu, Çağla. “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”. Journal of New Theory, no. 41, Dec. 2022, pp. 105-22, doi:10.53570/jnt.1202341.
Vancouver 1.Çelemoğlu Ç. Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. JNT [Internet]. 2022 Dec. 1;(41):105-22. Available from: https://izlik.org/JA39ZU36CM


TR Dizin 26024

Electronic Journals Library 13651

                                EBSCO 36309                                     

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).