Research Article
BibTex RIS Cite

Homoderivations in Prime Rings

Year 2023, , 23 - 34, 30.06.2023
https://doi.org/10.53570/jnt.1258402

Abstract

The study consists of two parts. The first part shows that if $h_{1}(x)h_{2}(y)=h_{3}(x)h_{4}(y)$, for all $x,y\in R$, then $ h_{1}=h_{3}$ and $h_{2}=h_{4}$. Here, $h_{1},h_{2},h_{3},$ and $h_{4}$ are zero-power valued non-zero homoderivations of a prime ring $R$. Moreover, this study provide an explanation related to $h_{1}$ and $h_{2}$ satisfying the condition $ah_{1}+h_{2}b=0$. The second part shows that $L\subseteq Z$ if one of the following conditions is satisfied: $i. h(L)=(0)$, $ ii. h(L)\subseteq Z$, $iii. h(xy)=xy$, for all $x,y\in L$, $iv. h(xy)=yx$, for all $x,y\in L$, or $v. h([x,y])=0$, and for all $x,y\in L$. Here, $R$ is a prime ring with a characteristic other than $2$, $h$ is a homoderivation of $R$, and $L$ is a non-zero square closed Lie ideal of $R$.

References

  • I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago, 1976.
  • M. M. El Sofy Aly, \emph{Rings with Some Kinds of Mappings}, Master's Thesis Cairo University (2000) Cairo.
  • A. Melaibari, N. Muthana, A. Al-Kenani, \emph{Homoderivations on Rings}, General Mathematics Notes 35 (1) (2016) 1{--}8.
  • E. F. Alharfie, N. M. Mthana, \emph{The Commutativity of Prime Rings with Homoderivations}, International Journal of Advanced and Applied Sciences 5 (5) (2018) 79{--}81.
  • E. F. Alharfie, N. M. Mthana, \emph{On Homoderivations and Commutativity of Rings}, Bulletin of the International Mathematical Virtual Institute 9 (2019) 301{--}304.
  • N. Rehman, M. R. Mozumder, A. Abbasi, \emph{Homoderivations on Ideals of Prime and Semiprime Rings}, The Aligarh Bulletin of Mathematics 38 (1-2) (2019) 77{--}87.
  • A. Al-Kenani, A. Melaibari, N. Muthana, \emph{Homoderivations and Commutativity of $\ast -$Prime Rings}, East-West Journal of Mathematics 17 (2) (2015) 117{--}126.
  • A. Melaibari, N. Muthana, A. Al-Kenani, \emph{Centrally-Extended Homoderivations on Rings}, Gulf Journal of Mathematics 4 (2) (2016) 62{--}70.
  • E. F. Alharfie, N. M. Mthana, \emph{Homoderivation of Prime Rings with Involution}, Bulletin of the International Mathematical Virtual Institute 9 (2019) 305{--}318. E. Gselmann, G. Kiss, \emph{Remarks on the Notion of Homo-Derivations}, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae Sectio Computatorica 51 (2020) 111--130.
  • M. J. Ateyya, \emph{Homogeneralized $\left(\sigma ,\tau\right)-$Derivations of Associative Rings}, in: A. Tercan, A. Gezer, M. Sar\i (Eds.), Studies on Scientific Developments in Geometry, Algebra, and Applied Mathematics, Ankara, 2022, p. 52.
  • M. M. El-Soufi, A. Ghareeb, \emph{Centrally Extended $\alpha $-Homoderivation on Prime and Semiprime Rings}, Hindawi Journal of Mathematics 2022 (2022) Article ID 2584177 5 pages.
  • M. S. Tammam El-Sayiad, A. Ageeb, A. Ghareeb, \emph{Centralizing $n-$Homoderivations of Semiprime Rings}, Hindawi Journal of Mathematics 2022 (2022) Article ID 1112183 8 pages.
  • A. Boua, E. K. S\"{o}\u{g}\"{u}t\c{c}\"{u}, \emph{Semiprime Rings with Generalized Homoderivations}, Boletim da Sociedade Paranaense de Matematica 41 (2023) 8 pages.
  • J. Bergen, I. N.Herstein, J. W. Kerr, \emph{Lie Ideals and Derivations of Prime Rings}, Journal of Algebra 71 (1) (1981) 259{--}267.
  • M. Bresar, \emph{Centralizing Mappings and Derivations in Prime Rings}, Journal of Algebra 156 (1993) 385--394.
  • E. C. Posner, \emph{Derivations in Prime Rings}, Proceedings of the American Mathematical Society 8 (6) (1957) 1093{--}1100.
  • J. H. Mayne, \emph{Centralizing Mappings of Prime Rings}, Canadian Mathematical Bulletin 27 (1) (1984) 122{--}126.
Year 2023, , 23 - 34, 30.06.2023
https://doi.org/10.53570/jnt.1258402

Abstract

References

  • I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago, 1976.
  • M. M. El Sofy Aly, \emph{Rings with Some Kinds of Mappings}, Master's Thesis Cairo University (2000) Cairo.
  • A. Melaibari, N. Muthana, A. Al-Kenani, \emph{Homoderivations on Rings}, General Mathematics Notes 35 (1) (2016) 1{--}8.
  • E. F. Alharfie, N. M. Mthana, \emph{The Commutativity of Prime Rings with Homoderivations}, International Journal of Advanced and Applied Sciences 5 (5) (2018) 79{--}81.
  • E. F. Alharfie, N. M. Mthana, \emph{On Homoderivations and Commutativity of Rings}, Bulletin of the International Mathematical Virtual Institute 9 (2019) 301{--}304.
  • N. Rehman, M. R. Mozumder, A. Abbasi, \emph{Homoderivations on Ideals of Prime and Semiprime Rings}, The Aligarh Bulletin of Mathematics 38 (1-2) (2019) 77{--}87.
  • A. Al-Kenani, A. Melaibari, N. Muthana, \emph{Homoderivations and Commutativity of $\ast -$Prime Rings}, East-West Journal of Mathematics 17 (2) (2015) 117{--}126.
  • A. Melaibari, N. Muthana, A. Al-Kenani, \emph{Centrally-Extended Homoderivations on Rings}, Gulf Journal of Mathematics 4 (2) (2016) 62{--}70.
  • E. F. Alharfie, N. M. Mthana, \emph{Homoderivation of Prime Rings with Involution}, Bulletin of the International Mathematical Virtual Institute 9 (2019) 305{--}318. E. Gselmann, G. Kiss, \emph{Remarks on the Notion of Homo-Derivations}, Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae Sectio Computatorica 51 (2020) 111--130.
  • M. J. Ateyya, \emph{Homogeneralized $\left(\sigma ,\tau\right)-$Derivations of Associative Rings}, in: A. Tercan, A. Gezer, M. Sar\i (Eds.), Studies on Scientific Developments in Geometry, Algebra, and Applied Mathematics, Ankara, 2022, p. 52.
  • M. M. El-Soufi, A. Ghareeb, \emph{Centrally Extended $\alpha $-Homoderivation on Prime and Semiprime Rings}, Hindawi Journal of Mathematics 2022 (2022) Article ID 2584177 5 pages.
  • M. S. Tammam El-Sayiad, A. Ageeb, A. Ghareeb, \emph{Centralizing $n-$Homoderivations of Semiprime Rings}, Hindawi Journal of Mathematics 2022 (2022) Article ID 1112183 8 pages.
  • A. Boua, E. K. S\"{o}\u{g}\"{u}t\c{c}\"{u}, \emph{Semiprime Rings with Generalized Homoderivations}, Boletim da Sociedade Paranaense de Matematica 41 (2023) 8 pages.
  • J. Bergen, I. N.Herstein, J. W. Kerr, \emph{Lie Ideals and Derivations of Prime Rings}, Journal of Algebra 71 (1) (1981) 259{--}267.
  • M. Bresar, \emph{Centralizing Mappings and Derivations in Prime Rings}, Journal of Algebra 156 (1993) 385--394.
  • E. C. Posner, \emph{Derivations in Prime Rings}, Proceedings of the American Mathematical Society 8 (6) (1957) 1093{--}1100.
  • J. H. Mayne, \emph{Centralizing Mappings of Prime Rings}, Canadian Mathematical Bulletin 27 (1) (1984) 122{--}126.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ayşe Engin 0000-0002-1626-5498

Neşet Aydın 0000-0002-7193-3399

Publication Date June 30, 2023
Submission Date March 1, 2023
Published in Issue Year 2023

Cite

APA Engin, A., & Aydın, N. (2023). Homoderivations in Prime Rings. Journal of New Theory(43), 23-34. https://doi.org/10.53570/jnt.1258402
AMA Engin A, Aydın N. Homoderivations in Prime Rings. JNT. June 2023;(43):23-34. doi:10.53570/jnt.1258402
Chicago Engin, Ayşe, and Neşet Aydın. “Homoderivations in Prime Rings”. Journal of New Theory, no. 43 (June 2023): 23-34. https://doi.org/10.53570/jnt.1258402.
EndNote Engin A, Aydın N (June 1, 2023) Homoderivations in Prime Rings. Journal of New Theory 43 23–34.
IEEE A. Engin and N. Aydın, “Homoderivations in Prime Rings”, JNT, no. 43, pp. 23–34, June 2023, doi: 10.53570/jnt.1258402.
ISNAD Engin, Ayşe - Aydın, Neşet. “Homoderivations in Prime Rings”. Journal of New Theory 43 (June 2023), 23-34. https://doi.org/10.53570/jnt.1258402.
JAMA Engin A, Aydın N. Homoderivations in Prime Rings. JNT. 2023;:23–34.
MLA Engin, Ayşe and Neşet Aydın. “Homoderivations in Prime Rings”. Journal of New Theory, no. 43, 2023, pp. 23-34, doi:10.53570/jnt.1258402.
Vancouver Engin A, Aydın N. Homoderivations in Prime Rings. JNT. 2023(43):23-34.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).