Research Article
BibTex RIS Cite

Geodetic Domination Integrity of Thorny Graphs

Year 2024, , 99 - 109, 29.03.2024
https://doi.org/10.53570/jnt.1442636

Abstract

The concept of geodetic domination integrity is a crucial parameter when examining the potential damage to a network. It has been observed that the removal of a geodetic set from the network can increase its vulnerability. This study explores the geodetic domination integrity parameter and presents general results on the geodetic domination integrity values of thorn ring graphs, $n$-sunlet graphs, thorn path graphs, thorn rod graphs, thorn star graphs, helm graphs, $E_p^t$ tree graphs, dendrimer graphs, spider graphs, and bispider graphs, which are the frequently used graph classes in the literature.

References

  • T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs, CRC Press, Boca Raton, 1998.
  • C. A. Barefoot, R. Entringer, H. Swart, Vulnerability in graphs - A comparative survey, Journal of Combinatorial Mathematics and Combinatorial Computing 1 (1987) 13-22.
  • R. Sundareswaran, V. Swaminathan, Domination integrity of middle graphs, in: T. Tamizh Chelvam, S. Somasundaram, R. Kala (Eds.), Algebra, Graph Theory and Their Applications, Narosa Publishing House, New Delhi, 2010, pp. 88-92.
  • R. Sundareswaran, V. Swaminathan, Domination integrity in trees, Bulletin of International Mathematical Virtual Institute 2 (2012) 153-161.
  • G. Balaraman, S. S. Kumar, R. Sundareswaran, Geodetic domination integrity in graphs, TWMS Journal of Applied and Engineering Mathematics 11 (Special Issue) (2021) 258-267.
  • F. Buckley, F. Harary, L. V. Quintas, Extremal results on the geodetic number of a graph, Scientia A (2) (1988) 17-26.
  • F. Harary, Graph theory, Addison Wesley Publishing Company, New York, 1969.
  • J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan, London, 1976.
  • G. Chartrand, L. Lesniak, P. Zhang, Graphs digraphs, 4th Edition, Chapman and Hall/CRC, New York, USA, 2015.
  • T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, The MIT Press, Cambridge, 2022.
  • H. Escuadro, R. Gera, A. Hansberg, N. Jafari Rad, L. Volkmann, Geodetic domination in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 77 (2011) 89-101.
  • M. Azari, On the Gutman index of Thorn graphs, Kragujevac Journal of Science 40 (2018) 33-48.
  • A. Shobana, B. Logapriya, Domination number of n-sunlet graph, International Journal of Pure and Applied Mathematics 118 (20) (2018) 1149-1152.
  • I. Gutman, Distance of thorny graph, Publications de l'Institut Mathématique 63 (77) (1998) 31-36.
  • P. Shiladhar, A. M. Naji, N. D. Soner, Leap Zagreb indices of some wheel related graphs, Journal of Computer and Mathematical Sciences 9 (3) (2018) 221-231.
  • A. K. Nagar, S. Sriram, On eccentric connectivity index of eccentric graph of regular dendrimer, Mathematics in Computer Science 10 (2) (2016) 229-237.
  • B. Sahin, A. Sahin, On dominaton type invariants of regular dendrimer, Journal of Discrete Mathematics and Its Applications 7 (3) (2022) 147-152.
  • N. B. Ibrahim, A. A. Jund, Edge connected domination polynomial of a graph, Palestine Journal of Mathematics 7 (2) (2018) 458-467.
Year 2024, , 99 - 109, 29.03.2024
https://doi.org/10.53570/jnt.1442636

Abstract

References

  • T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs, CRC Press, Boca Raton, 1998.
  • C. A. Barefoot, R. Entringer, H. Swart, Vulnerability in graphs - A comparative survey, Journal of Combinatorial Mathematics and Combinatorial Computing 1 (1987) 13-22.
  • R. Sundareswaran, V. Swaminathan, Domination integrity of middle graphs, in: T. Tamizh Chelvam, S. Somasundaram, R. Kala (Eds.), Algebra, Graph Theory and Their Applications, Narosa Publishing House, New Delhi, 2010, pp. 88-92.
  • R. Sundareswaran, V. Swaminathan, Domination integrity in trees, Bulletin of International Mathematical Virtual Institute 2 (2012) 153-161.
  • G. Balaraman, S. S. Kumar, R. Sundareswaran, Geodetic domination integrity in graphs, TWMS Journal of Applied and Engineering Mathematics 11 (Special Issue) (2021) 258-267.
  • F. Buckley, F. Harary, L. V. Quintas, Extremal results on the geodetic number of a graph, Scientia A (2) (1988) 17-26.
  • F. Harary, Graph theory, Addison Wesley Publishing Company, New York, 1969.
  • J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan, London, 1976.
  • G. Chartrand, L. Lesniak, P. Zhang, Graphs digraphs, 4th Edition, Chapman and Hall/CRC, New York, USA, 2015.
  • T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, The MIT Press, Cambridge, 2022.
  • H. Escuadro, R. Gera, A. Hansberg, N. Jafari Rad, L. Volkmann, Geodetic domination in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 77 (2011) 89-101.
  • M. Azari, On the Gutman index of Thorn graphs, Kragujevac Journal of Science 40 (2018) 33-48.
  • A. Shobana, B. Logapriya, Domination number of n-sunlet graph, International Journal of Pure and Applied Mathematics 118 (20) (2018) 1149-1152.
  • I. Gutman, Distance of thorny graph, Publications de l'Institut Mathématique 63 (77) (1998) 31-36.
  • P. Shiladhar, A. M. Naji, N. D. Soner, Leap Zagreb indices of some wheel related graphs, Journal of Computer and Mathematical Sciences 9 (3) (2018) 221-231.
  • A. K. Nagar, S. Sriram, On eccentric connectivity index of eccentric graph of regular dendrimer, Mathematics in Computer Science 10 (2) (2016) 229-237.
  • B. Sahin, A. Sahin, On dominaton type invariants of regular dendrimer, Journal of Discrete Mathematics and Its Applications 7 (3) (2022) 147-152.
  • N. B. Ibrahim, A. A. Jund, Edge connected domination polynomial of a graph, Palestine Journal of Mathematics 7 (2) (2018) 458-467.
There are 18 citations in total.

Details

Primary Language English
Subjects Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Research Article
Authors

Şeyma Onur 0000-0003-4650-6966

Gökşen Bacak Turan 0000-0001-6935-4841

Early Pub Date March 28, 2024
Publication Date March 29, 2024
Submission Date February 25, 2024
Acceptance Date March 21, 2024
Published in Issue Year 2024

Cite

APA Onur, Ş., & Bacak Turan, G. (2024). Geodetic Domination Integrity of Thorny Graphs. Journal of New Theory(46), 99-109. https://doi.org/10.53570/jnt.1442636
AMA Onur Ş, Bacak Turan G. Geodetic Domination Integrity of Thorny Graphs. JNT. March 2024;(46):99-109. doi:10.53570/jnt.1442636
Chicago Onur, Şeyma, and Gökşen Bacak Turan. “Geodetic Domination Integrity of Thorny Graphs”. Journal of New Theory, no. 46 (March 2024): 99-109. https://doi.org/10.53570/jnt.1442636.
EndNote Onur Ş, Bacak Turan G (March 1, 2024) Geodetic Domination Integrity of Thorny Graphs. Journal of New Theory 46 99–109.
IEEE Ş. Onur and G. Bacak Turan, “Geodetic Domination Integrity of Thorny Graphs”, JNT, no. 46, pp. 99–109, March 2024, doi: 10.53570/jnt.1442636.
ISNAD Onur, Şeyma - Bacak Turan, Gökşen. “Geodetic Domination Integrity of Thorny Graphs”. Journal of New Theory 46 (March 2024), 99-109. https://doi.org/10.53570/jnt.1442636.
JAMA Onur Ş, Bacak Turan G. Geodetic Domination Integrity of Thorny Graphs. JNT. 2024;:99–109.
MLA Onur, Şeyma and Gökşen Bacak Turan. “Geodetic Domination Integrity of Thorny Graphs”. Journal of New Theory, no. 46, 2024, pp. 99-109, doi:10.53570/jnt.1442636.
Vancouver Onur Ş, Bacak Turan G. Geodetic Domination Integrity of Thorny Graphs. JNT. 2024(46):99-109.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).