Research Article
BibTex RIS Cite

Transversal Semitotal Domination Number in Graphs

Year 2025, Issue: 52, 1 - 8, 30.09.2025
https://doi.org/10.53570/jnt.1720611

Abstract

A transversal semitotal dominating set in a graph $G$ is a subset of vertices that intersects every minimal semitotal dominating set of \( G \) and itself forms a semitotal dominating set. Among all sets that intersect each semitotal dominating set of a graph \( G \), the one with the smallest cardinality defines a key parameter in the present study. This parameter is referred to as the transversal semitotal domination number and is denoted by \( \gamma_{tt2}(G) \). This paper investigates fundamental properties of this parameter in arbitrary graphs and determines exact values of \( \gamma_{tt2}(G) \) for several standard graph classes, including complete, star, wheel, cycle, path, and complete bipartite graphs.

References

  • G. Chartrand, L. Lesniak, Graphs and digraphs, Chapman and Hall, 1996.
  • C. A. Barefoot, R. Entringer, H. Swart, Vulnerability in graphs: a comparative survey, Journal of Combinatorial Mathematics and Combinatorial Computing 1 (1987) 13--22.
  • Ö. K. Kürkçü, E. Aslan, A comparison between edge neighbor rupture degree and edge scattering number in graphs, International Journal of Foundations of Computer Science 29 (07) (2018) 1119--1142.
  • E. Aslan, Ö. K. Kürkçü, Edge scattering number of gear graphs, Bulletin of The International Mathematical Virtual Institute 5 (1) (2015) 25--31.
  • T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, CRC Press, 1998.
  • E. J. Cockayne, R. W. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks 10 (3) (1980) 211--219.
  • W. Goddard, M. A. Henning, C. A. McPillan, Semitotal domination in graphs, Utilitas Mathematica 94 (2014) 67--81.
  • T. W. Haynes, M. A. Henning, Trees with unique minimum semitotal dominating sets, Graphs and Combinatorics 36 (2020) 689--702.
  • Z. Kartal, A. Aytaç, Semitotal domination of Harary graphs, Tbilisi Mathematical Journal 13 (3) (2020) 11--17.
  • Z. Kartal Yıldız, A. Aytaç, Semitotal domination of some known trees, Bulletin of the International Mathematical Virtual Institute 11 (1) (2021) 147--158.
  • B. L. Susada, R. G. Eballe, Independent semitotal domination in the join of graphs, Asian Research Journal of Mathematics 19 (3) (2023) 25--31.
  • B. L. Susada, R. G. Eballe, Independent semitotal domination in the corona of graphs, Advances and Applications in Discrete Mathematics 39 (1) (2024) 89--98.
  • N. Alon, M. R. Fellows, D. R. Hare, Vertex transversals that dominate, Journal of Graph Theory 21 (1) (1996) 21--31.
  • M. R. Fellows, Transversals of vertex partitions in graphs, SIAM Journal on Discrete Mathematics 3 (2) (1990) 206--215.
  • I. S. Hamid, Independent transversal domination in graphs, Discussiones Mathematicae Graph Theory 32 (1) (2012) 5--17.
  • A. Aytaç, C. Erkal, Independent transversal domination number in complementary prisms, Honam Mathematical Journal 43 (1) (2021) 17--25.
  • H. A. Ahangar, V. Samodivkin, I. G. Yero, Independent transversal dominating sets in graphs: Complexity and structural properties, Filomat 30 (2) (2016) 293--303.
  • N. M. G. Cotejo, E. D. Benacer, On neighbourhood transversal domination of some graphs, Advances and Applications in Discrete Mathematics 28 (2) (2021) 205--215.
  • A. C. Mart\'{ı}nez, I. Peterin, I. G. Yero, Independent transversal total domination versus total domination in trees, Discussiones Mathematicae Graph Theory 41 (1) (2021) 213--224.
  • M. A. O. Bonsocan, F. P. Jamil, Transversal hop domination in graphs, European Journal of Pure and Applied Mathematics 16 (1) (2023) 192--206.
  • M. A. O. Bonsocan, F. P. Jamil, Transversal total hop domination in graphs, Discrete Mathematics, Algorithms and Applications 16 (7) (2024) 2350095.
  • Z. Kartal Yıldız, A. Aytaç, Semitotal domination number of some graph operations, Numerical Methods for Partial Differential Equations 39 (3) (2023) 1841--1850.
  • S. R. Nayaka, A. Alwardi, Puttaswamy, Transversal domination in graphs, Gulf Journal of Mathematics 6 (2) (2018) 41--49.
There are 23 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Zeliha Kartal Yıldız 0000-0001-6671-7045

Submission Date June 16, 2025
Acceptance Date September 22, 2025
Early Pub Date September 30, 2025
Publication Date September 30, 2025
Published in Issue Year 2025 Issue: 52

Cite

APA Kartal Yıldız, Z. (2025). Transversal Semitotal Domination Number in Graphs. Journal of New Theory, 52, 1-8. https://doi.org/10.53570/jnt.1720611
AMA 1.Kartal Yıldız Z. Transversal Semitotal Domination Number in Graphs. JNT. 2025;(52):1-8. doi:10.53570/jnt.1720611
Chicago Kartal Yıldız, Zeliha. 2025. “Transversal Semitotal Domination Number in Graphs”. Journal of New Theory, nos. 52: 1-8. https://doi.org/10.53570/jnt.1720611.
EndNote Kartal Yıldız Z (September 1, 2025) Transversal Semitotal Domination Number in Graphs. Journal of New Theory 52 1–8.
IEEE [1]Z. Kartal Yıldız, “Transversal Semitotal Domination Number in Graphs”, JNT, no. 52, pp. 1–8, Sept. 2025, doi: 10.53570/jnt.1720611.
ISNAD Kartal Yıldız, Zeliha. “Transversal Semitotal Domination Number in Graphs”. Journal of New Theory. 52 (September 1, 2025): 1-8. https://doi.org/10.53570/jnt.1720611.
JAMA 1.Kartal Yıldız Z. Transversal Semitotal Domination Number in Graphs. JNT. 2025;:1–8.
MLA Kartal Yıldız, Zeliha. “Transversal Semitotal Domination Number in Graphs”. Journal of New Theory, no. 52, Sept. 2025, pp. 1-8, doi:10.53570/jnt.1720611.
Vancouver 1.Kartal Yıldız Z. Transversal Semitotal Domination Number in Graphs. JNT [Internet]. 2025 Sept. 1;(52):1-8. Available from: https://izlik.org/JA86SB98TZ


TR Dizin 26024

Electronic Journals Library 13651

                                EBSCO 36309                                     

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).