Research Article
BibTex RIS Cite

Roots of Second Order Polynomials with Real Coefficients in Elliptic Scator Algebra

Year 2021, , 39 - 48, 30.09.2021
https://doi.org/10.53570/jnt.956340

Abstract

The roots of second order polynomials with real coefficients are obtained in the S^{1+2} scator set. Explicit formulae are computed in terms of the polynomial coefficients. Although the scator product does not distribute over addition, the lack of distributivity is surmountable in order to find the zeros of the polynomial. The structure of the solutions and their distribution in 1+2 dimensional scator space are illustrated and discussed. There exist six, two, or eight solutions, depending on the value of polynomial coefficients. Four of these roots only exist in the hypercomplex S^{1+2}\S^{1+1} set.

References

  • L.~Huang, W. So, Quadratic Formulas for Quaternions, Applied Mathematics Letters 15(5) (2002) 533-540.
  • E. Macias-Virgos, M. Pereira-Saez, On the Quaternionic Quadratic Equation xax+bx+xc+d=0, Advances in Applied Clifford Algebras 29(81) (2019) 1-13.
  • M. Fernandez-Guasti, Associativity in Scator Algebra and the Quantum Wavefunction Collapse, Universal Journal of Mathematics and Applications 1(2) (2018) 80-88.
  • M. Fernandez-Guasti, A non-distributive Extension of Complex Numbers to Higher Dimensions, Advances in Applied Clifford Algebras 25 (2015) 829-849.
  • M. Fernandez-Guasti, Composition of Velocities in a Scator Deformed Lorentz Metric, European Physical Journal-Plus 135 (2020) 542.
  • M. Fernandez-Guasti, Imaginary Scators Bound Set under the Iterated Quadratic Mapping In 1+2 Dimensional Parameter Space, International Journal of Bifurcation and Chaos 26(1) (2016) 1630002.
  • J. L. Cieslinski, D. Zhalukevich, Explicit Formulas for All Scator Holomorphic Functions in the (1+2)-Dimensional Case, Symmetry 12(9) (2020) 1-6.
  • N. Bourbaki, Algebra I, Elements of Mathematics, Springer Verlag, 2007.
  • M. Fernandez-Guasti, Differential Quotients in Elliptic Scator Algebra, Mathematical Methods in the Applied Sciences 41(12) (2018) 4827-4840.
  • I. Niven, The Roots of a Quaternion, The American Mathematical Monthly 49(6) (1942) 386-388.
  • L. Brand, The Roots of a Quaternion, The American Mathematical Monthly 49(8) (1942) 519-520.
  • S. J. Sangwine, Biquaternion (Complexified Quaternion) roots of -1, Advances in Applied Clifford Algebras 16 (2006) 63-68.
  • M. Ozdemir, The roots of a Split Quaternion, Applied Mathematics Letters 22(2) (2009) 258-263.
  • E. Hitzer, R. Ablamowicz, Geometric Roots of -1 in Clifford Algebras Cl_p,q with p + q ≤ 4, Advances in Applied Clifford Algebras 21 (2010) 121-144.
  • M. Fernandez-Guasti, Powers of Elliptic Scator Numbers, Preprints (2021) doi: 10.20944/preprints202108.0572.v1.
Year 2021, , 39 - 48, 30.09.2021
https://doi.org/10.53570/jnt.956340

Abstract

References

  • L.~Huang, W. So, Quadratic Formulas for Quaternions, Applied Mathematics Letters 15(5) (2002) 533-540.
  • E. Macias-Virgos, M. Pereira-Saez, On the Quaternionic Quadratic Equation xax+bx+xc+d=0, Advances in Applied Clifford Algebras 29(81) (2019) 1-13.
  • M. Fernandez-Guasti, Associativity in Scator Algebra and the Quantum Wavefunction Collapse, Universal Journal of Mathematics and Applications 1(2) (2018) 80-88.
  • M. Fernandez-Guasti, A non-distributive Extension of Complex Numbers to Higher Dimensions, Advances in Applied Clifford Algebras 25 (2015) 829-849.
  • M. Fernandez-Guasti, Composition of Velocities in a Scator Deformed Lorentz Metric, European Physical Journal-Plus 135 (2020) 542.
  • M. Fernandez-Guasti, Imaginary Scators Bound Set under the Iterated Quadratic Mapping In 1+2 Dimensional Parameter Space, International Journal of Bifurcation and Chaos 26(1) (2016) 1630002.
  • J. L. Cieslinski, D. Zhalukevich, Explicit Formulas for All Scator Holomorphic Functions in the (1+2)-Dimensional Case, Symmetry 12(9) (2020) 1-6.
  • N. Bourbaki, Algebra I, Elements of Mathematics, Springer Verlag, 2007.
  • M. Fernandez-Guasti, Differential Quotients in Elliptic Scator Algebra, Mathematical Methods in the Applied Sciences 41(12) (2018) 4827-4840.
  • I. Niven, The Roots of a Quaternion, The American Mathematical Monthly 49(6) (1942) 386-388.
  • L. Brand, The Roots of a Quaternion, The American Mathematical Monthly 49(8) (1942) 519-520.
  • S. J. Sangwine, Biquaternion (Complexified Quaternion) roots of -1, Advances in Applied Clifford Algebras 16 (2006) 63-68.
  • M. Ozdemir, The roots of a Split Quaternion, Applied Mathematics Letters 22(2) (2009) 258-263.
  • E. Hitzer, R. Ablamowicz, Geometric Roots of -1 in Clifford Algebras Cl_p,q with p + q ≤ 4, Advances in Applied Clifford Algebras 21 (2010) 121-144.
  • M. Fernandez-Guasti, Powers of Elliptic Scator Numbers, Preprints (2021) doi: 10.20944/preprints202108.0572.v1.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences, Applied Mathematics
Journal Section Research Article
Authors

Manuel Fernandez-guasti 0000-0002-1839-6002

Publication Date September 30, 2021
Submission Date June 23, 2021
Published in Issue Year 2021

Cite

APA Fernandez-guasti, M. (2021). Roots of Second Order Polynomials with Real Coefficients in Elliptic Scator Algebra. Journal of New Theory(36), 39-48. https://doi.org/10.53570/jnt.956340
AMA Fernandez-guasti M. Roots of Second Order Polynomials with Real Coefficients in Elliptic Scator Algebra. JNT. September 2021;(36):39-48. doi:10.53570/jnt.956340
Chicago Fernandez-guasti, Manuel. “Roots of Second Order Polynomials With Real Coefficients in Elliptic Scator Algebra”. Journal of New Theory, no. 36 (September 2021): 39-48. https://doi.org/10.53570/jnt.956340.
EndNote Fernandez-guasti M (September 1, 2021) Roots of Second Order Polynomials with Real Coefficients in Elliptic Scator Algebra. Journal of New Theory 36 39–48.
IEEE M. Fernandez-guasti, “Roots of Second Order Polynomials with Real Coefficients in Elliptic Scator Algebra”, JNT, no. 36, pp. 39–48, September 2021, doi: 10.53570/jnt.956340.
ISNAD Fernandez-guasti, Manuel. “Roots of Second Order Polynomials With Real Coefficients in Elliptic Scator Algebra”. Journal of New Theory 36 (September 2021), 39-48. https://doi.org/10.53570/jnt.956340.
JAMA Fernandez-guasti M. Roots of Second Order Polynomials with Real Coefficients in Elliptic Scator Algebra. JNT. 2021;:39–48.
MLA Fernandez-guasti, Manuel. “Roots of Second Order Polynomials With Real Coefficients in Elliptic Scator Algebra”. Journal of New Theory, no. 36, 2021, pp. 39-48, doi:10.53570/jnt.956340.
Vancouver Fernandez-guasti M. Roots of Second Order Polynomials with Real Coefficients in Elliptic Scator Algebra. JNT. 2021(36):39-48.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).