Research Article
BibTex RIS Cite

Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space

Year 2018, Issue: 25, 29 - 37, 06.10.2018

Abstract

In this paper, we define new separation axioms in soft topological space via the concept of the Soft
Truing Point and study the most important properties and results of it.

References

  • [1] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and A. M. Abd El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8, (2014) 1595–1603.
  • [2] D. Molodtsov, Soft set theory-First results, Computers & Mathematics with Applications, 37 (1999), 19–31
  • [3] D. Wardowski, On a soft mapping and its fixed points, Fixed Point Theory Appl, 182 (2013) 1687-1696
  • [4] D. N. Georgiou, A. C. Megaritis and V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7(2) (2013) 1889-1901.
  • [5] D. Jankovic and T. R. Hamlet, New topologies from old via ideals, The American Mathematical Monthly, 97(1990) 295-310.
  • [6] I. Zorlutuna and H. Cakus, On continuity on soft mappings, App. Math. Inf. sci 9 (2015), 403-409
  • [7] G. Xuechong, (2015), Study on central soft sets: Definitions and basic operations,
  • [8] L. A. Al-Swidi and A. B Al-Nafee," New Separation Axioms Using the idea of "Gem-Set" in Topological Space" Mathematical Theory and modeling. 3 (3) (2013) 60-66.
  • [9] L. A. Al-Swidi, Z. M. Al-Rekabi, A-density in soft topological spaces, Journal of Babylon University, 25(6) (2017), 1-13.
  • [10] L. A. Al-Swidi, and Dho. F.AL-Amri, Resolvability on soft topological spaces , M.sc.thesis University of Babylon.theory and its applications , 182 (2016).
  • [11] M. I. Ali, F. Feng, X. Liu W. Keun min and M. Shabir, On some new operations in soft set theory, computers and mathematics with applications, 579 (2009) 1547-1553.
  • [12] N. Cagman, S. Karatas, S. Enginogllu, Soft topology, computers and mathematics with applications, 62 (2011) 351-358.
  • [13] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, computers and mathematics with applications, 45 (2003), 555-562.
  • [14] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. with Appl, 44 (2002) 1077–1083.
  • [15] S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput. Math. with Appl., 62 (2011) 4058–4067.
  • [16] M. Shabir and M. Naz, On soft topological spaces, computers and mathematics with applications, 61 (2011) 1780-1799.
  • [17] H. Sabir and A. Bashir, Soft separation axioms in soft topological space, Journal of math. and statistics, Vol.44 (3) (2015) 559-568.
  • [18] I. Zorlutuna, M. Akdag and W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. 3(2) (2012) 171-185.
  • [19] L. A. Al-Swidi and A. Al-Fathly, Types of Local Functions via Soft Sets, International Journal of Mathematical Analysis, Vol. 11(6), (2017) 255 – 265.
  • [20] A. Kahral and B. Ahmad, Mappings on soft classes, new math. Nat. Comput. 7 no.3 (2011), 471-481
  • [21] A. B. Al-Nafee., (2018) "On ∗Soft Turing Point with Separation Axioms", JUPAS, vol. 26, no.7, pp.200-209.
Year 2018, Issue: 25, 29 - 37, 06.10.2018

Abstract

References

  • [1] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh and A. M. Abd El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8, (2014) 1595–1603.
  • [2] D. Molodtsov, Soft set theory-First results, Computers & Mathematics with Applications, 37 (1999), 19–31
  • [3] D. Wardowski, On a soft mapping and its fixed points, Fixed Point Theory Appl, 182 (2013) 1687-1696
  • [4] D. N. Georgiou, A. C. Megaritis and V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7(2) (2013) 1889-1901.
  • [5] D. Jankovic and T. R. Hamlet, New topologies from old via ideals, The American Mathematical Monthly, 97(1990) 295-310.
  • [6] I. Zorlutuna and H. Cakus, On continuity on soft mappings, App. Math. Inf. sci 9 (2015), 403-409
  • [7] G. Xuechong, (2015), Study on central soft sets: Definitions and basic operations,
  • [8] L. A. Al-Swidi and A. B Al-Nafee," New Separation Axioms Using the idea of "Gem-Set" in Topological Space" Mathematical Theory and modeling. 3 (3) (2013) 60-66.
  • [9] L. A. Al-Swidi, Z. M. Al-Rekabi, A-density in soft topological spaces, Journal of Babylon University, 25(6) (2017), 1-13.
  • [10] L. A. Al-Swidi, and Dho. F.AL-Amri, Resolvability on soft topological spaces , M.sc.thesis University of Babylon.theory and its applications , 182 (2016).
  • [11] M. I. Ali, F. Feng, X. Liu W. Keun min and M. Shabir, On some new operations in soft set theory, computers and mathematics with applications, 579 (2009) 1547-1553.
  • [12] N. Cagman, S. Karatas, S. Enginogllu, Soft topology, computers and mathematics with applications, 62 (2011) 351-358.
  • [13] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, computers and mathematics with applications, 45 (2003), 555-562.
  • [14] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. with Appl, 44 (2002) 1077–1083.
  • [15] S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput. Math. with Appl., 62 (2011) 4058–4067.
  • [16] M. Shabir and M. Naz, On soft topological spaces, computers and mathematics with applications, 61 (2011) 1780-1799.
  • [17] H. Sabir and A. Bashir, Soft separation axioms in soft topological space, Journal of math. and statistics, Vol.44 (3) (2015) 559-568.
  • [18] I. Zorlutuna, M. Akdag and W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. 3(2) (2012) 171-185.
  • [19] L. A. Al-Swidi and A. Al-Fathly, Types of Local Functions via Soft Sets, International Journal of Mathematical Analysis, Vol. 11(6), (2017) 255 – 265.
  • [20] A. Kahral and B. Ahmad, Mappings on soft classes, new math. Nat. Comput. 7 no.3 (2011), 471-481
  • [21] A. B. Al-Nafee., (2018) "On ∗Soft Turing Point with Separation Axioms", JUPAS, vol. 26, no.7, pp.200-209.
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ahmed Basim Al-nafee This is me

Luay Abd Al-hani Al-swidi This is me

Publication Date October 6, 2018
Submission Date April 2, 2018
Published in Issue Year 2018 Issue: 25

Cite

APA Al-nafee, A. B., & Al-swidi, L. A. A.-h. (2018). Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space. Journal of New Theory(25), 29-37.
AMA Al-nafee AB, Al-swidi LAAh. Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space. JNT. October 2018;(25):29-37.
Chicago Al-nafee, Ahmed Basim, and Luay Abd Al-hani Al-swidi. “Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space”. Journal of New Theory, no. 25 (October 2018): 29-37.
EndNote Al-nafee AB, Al-swidi LAA-h (October 1, 2018) Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space. Journal of New Theory 25 29–37.
IEEE A. B. Al-nafee and L. A. A.-h. Al-swidi, “Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space”, JNT, no. 25, pp. 29–37, October 2018.
ISNAD Al-nafee, Ahmed Basim - Al-swidi, Luay Abd Al-hani. “Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space”. Journal of New Theory 25 (October 2018), 29-37.
JAMA Al-nafee AB, Al-swidi LAA-h. Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space. JNT. 2018;:29–37.
MLA Al-nafee, Ahmed Basim and Luay Abd Al-hani Al-swidi. “Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space”. Journal of New Theory, no. 25, 2018, pp. 29-37.
Vancouver Al-nafee AB, Al-swidi LAA-h. Separation Axioms Using Soft Turing Point of a Soft Ideal in Soft Topological Space. JNT. 2018(25):29-37.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).