Research Article
BibTex RIS Cite
Year 2021, Issue: 34, 72 - 81, 30.03.2021

Abstract

References

  • M. R. Mahmoud, R. M. Mandouh, On the Transmuted Fréchet Distribution, Journal of Applied Sciences Research 9(10) (2013) 5553-5561.
  • G. G. Hamedani, Characterizations of Transmuted Complementary Weibull Geometric Distribution, Pakistan Journal of Statistics and Operation Research 11(2) (2015) 153-157.
  • A. Ahmad, S. P. Ahmad, A. Ahmed, Characterization and Estimation of Transmuted Kumaraswamy Distribution, Mathematical Theory and Modeling 5(9) (2015) 168-174.
  • A. Ahmad, S. P. Ahmad, A. Ahmed, Characterization and Estimation of Transmuted Rayleigh Distribution, Journal of Statistics Applications & Probability 4(2) (2015) 315-321.
  • F. A. Bhatti, M. Ahmad, A. Ali, Some Characterizations of Transmuted Dagum Distribution, International Conference on Statistical Sciences, Khairpur, Pakistan 31 (2017) 109-122.
  • F. A. Bhatti, G. G. Hamedani, A. Ali, M. Ahmad, Some Characterizations of Transmuted Modified Burr III Distribution, Asian Journal of Probability and Statistics (2018) 1-9.
  • F. A. Bhatti, G. G. Hamedani, M. Ç. Korkmaz, M. Ahmad, The Transmuted Geometric-quadratic Hazard Rate Distribution: Development, Properties, Characterizations and Applications, Journal of Statistical Distributions and Applications 5(1) (2018) 1-23.
  • C. Tanış, M. Çokbarlı, B. Saraçoğlu, Approximate Bayes Estimation for Log-Dagum Distribution, Cumhuriyet Science Journal 40(2) (2019) 477-486.
  • C. Tanış, B. Saraçoğlu, Comparisons of Six Different Estimation Methods for log-Kumaraswamy Distribution, Thermal Science 23 (6) (2019) 1839-1847.
  • M. Hanif, U. Shahzad, S. Asghar, N. Koyuncu, Goodness of Fit Testing for Rician Distribution by Using Several Estimation Methods, International Journal of Statistics and Economics 19 (2) (2018) 17-36.
  • M. Anas, N. Jamal, M. Hanif, U. Shahzad, Extreme Value Distributions on Closing Quotations and Returns of Islamabad Stock Exchange, Asian Journal of Advanced Research and Reports 5(4) (2019) 1-9.
  • M. Hanif, U. Shahzad, S. Amin, N. Afshan, Estimation of the Discrete Inverse Weibull Distribution Parameters Using Simple Random sampling and Ranked Set Sampling, Asian Journal of Advanced Research and Reports (Accepted Paper) (2020).
  • M. Hanif, U. Shahzad, I. Shahzadi N. Koyuncu, Stochastically Increasing Grouped data Using the MLE of Mean of the Generalized Exponential Distribution, Journal of Organizational Behavior & Analytics 1(1) (2021) 65-82.
  • K. Karakaya, C. Tanış, Different Methods of Estimation for the One Parameter Akash Distribution, Cumhuriyet Science Journal 41(4) (2020) 944-950.
  • C. Tanış, B. Saraçoğlu, On the Record-based Transmuted Model of Balakrishnan and He Based on Weibull Distribution, Communications in Statistics-Simulation and Computation (2020) https://doi.org/10.1080/03610918.2020.1740261
  • K. Karakaya, C. Tanış, Estimating the Parameters of Xgamma Weibull Distribution, Adıyaman University Journal of Science 10(2) (2020) 557-571.
  • C. Tanış, B. Saraçoğlu, C. Kuş, A. Pekgör, K. Karakaya, Transmuted Lower Record Type Fréchet Distribution with Lifetime Regression Analysis Based on Type I-Censored Data, Journal of Statistical Theory and Applications (2021) https://doi.org/10.2991/jsta.d.210115.001
  • M. N. Shahzad, Z. Asghar, Transmuted Power Function Distribution: A More Flexible Distribution, Journal of Statistics and Management Systems 19(4) (2016) 519-539.
  • A. S. Akhter, Methods for Estimating the Parameters of the Power Function Distribution, Pakistan Journal of Statistics and Operation Research (2013) 213-224.
  • M. H. Tahir, M. Alizadeh, M. Mansoor, G. M. Cordeiro, M. Zubair, The Weibull-power Function Distribution with Applications, Hacettepe Journal of Mathematics and Statistics 45(1) (2016) 245-265.
  • I. E. Okorie, A. C. Akpanta, J. Ohakwe, D. C. Chikezie, The Modified Power Function Distribution, Cogent Mathematics 4(1) (2017) https://doi.org/10.1080/23311835.2017.1319592
  • N. Bursa, G. Özel, The Exponentiated Kumaraswamy-power Function Distribution, Hacettepe Journal of Mathematics and Statistics 46(2) (2017) 277-292.
  • A. S. Hassan, S. M. Assar, The Exponentiated Weibull Power Function Distribution, Journal of Data Science 16 (2017) 589-614.
  • M. A. U. Haq, M. Elgarhy, S. Hashmi, G. Ö. Kadiler, Q. U. Ain, Transmuted Weibull Power Function Distribution: its Properties and Applications, Journal of Data Science 16(2) (2018) 397-418.
  • S. İ. Ansari, M. Samuh, A. Bazyari, Cubic Transmuted Power Function Distribution, Gazi University Journal of Science 32(4) (2019) 1322-1337.
  • M. Z. Arshad, M. Z. Iqbal, M. Ahmad, Exponentiated Power Function Distribution: Properties and Applications, Journal of Statistical Theory and Applications 19(2) (2020) 297-313.
  • R. Jabeen, A. Zaka, Percentiles Estimation for The Parameters of Power Function Distribution, Advances and Applications in Statistics 62 (2) (2020) 127-137.
  • R. E. Glaser, Bathtub and Related Failure Rate Characterizations, Journal of the American Statistical Association 75 (371) (1980) 667-672.
  • P. Artzner, Application of Coherent Risk Measures to Capital Requirements in Insurance, North American Actuarial Journal 2(2) (1999) 11-25.
  • A. Z. Afify, A. M. Gemeay, N. A. Ibrahim, The Heavy-tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data, Mathematics 8(8) (2020) 1-28.
  • Z. Landsman, On the Tail Mean-variance Optimal Portfolio Selection, Insurance: Mathematics and Economics 46(3) (2010) 547-553.

On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation

Year 2021, Issue: 34, 72 - 81, 30.03.2021

Abstract

Transmuted power function distribution is generated using the quadratic rank transmutation method based on the mixture of the distributions of two order statistics. The distributions generating via Quadratic rank transmutation map are more flexible than the baseline ones since they have a potential to model various dataset. In this study, we provide some distributional properties and statistical inferences of transmuted power function distribution. We describe several previously unexamined properties, such as density shape, hazard shape, and the transmuted power function distribution measures. We also tackle the problem of point estimation for transmuted power function distribution. In this regard, maximum likelihood, least-squares, weighted least-squares, Anderson-Darling method, and Crámer–Von-Mises method are considered to estimate the two parameters of transmuted power function distribution. A comprehensive Monte Carlo simulation study is performed to compare these methods via bias and mean-squared errors.

References

  • M. R. Mahmoud, R. M. Mandouh, On the Transmuted Fréchet Distribution, Journal of Applied Sciences Research 9(10) (2013) 5553-5561.
  • G. G. Hamedani, Characterizations of Transmuted Complementary Weibull Geometric Distribution, Pakistan Journal of Statistics and Operation Research 11(2) (2015) 153-157.
  • A. Ahmad, S. P. Ahmad, A. Ahmed, Characterization and Estimation of Transmuted Kumaraswamy Distribution, Mathematical Theory and Modeling 5(9) (2015) 168-174.
  • A. Ahmad, S. P. Ahmad, A. Ahmed, Characterization and Estimation of Transmuted Rayleigh Distribution, Journal of Statistics Applications & Probability 4(2) (2015) 315-321.
  • F. A. Bhatti, M. Ahmad, A. Ali, Some Characterizations of Transmuted Dagum Distribution, International Conference on Statistical Sciences, Khairpur, Pakistan 31 (2017) 109-122.
  • F. A. Bhatti, G. G. Hamedani, A. Ali, M. Ahmad, Some Characterizations of Transmuted Modified Burr III Distribution, Asian Journal of Probability and Statistics (2018) 1-9.
  • F. A. Bhatti, G. G. Hamedani, M. Ç. Korkmaz, M. Ahmad, The Transmuted Geometric-quadratic Hazard Rate Distribution: Development, Properties, Characterizations and Applications, Journal of Statistical Distributions and Applications 5(1) (2018) 1-23.
  • C. Tanış, M. Çokbarlı, B. Saraçoğlu, Approximate Bayes Estimation for Log-Dagum Distribution, Cumhuriyet Science Journal 40(2) (2019) 477-486.
  • C. Tanış, B. Saraçoğlu, Comparisons of Six Different Estimation Methods for log-Kumaraswamy Distribution, Thermal Science 23 (6) (2019) 1839-1847.
  • M. Hanif, U. Shahzad, S. Asghar, N. Koyuncu, Goodness of Fit Testing for Rician Distribution by Using Several Estimation Methods, International Journal of Statistics and Economics 19 (2) (2018) 17-36.
  • M. Anas, N. Jamal, M. Hanif, U. Shahzad, Extreme Value Distributions on Closing Quotations and Returns of Islamabad Stock Exchange, Asian Journal of Advanced Research and Reports 5(4) (2019) 1-9.
  • M. Hanif, U. Shahzad, S. Amin, N. Afshan, Estimation of the Discrete Inverse Weibull Distribution Parameters Using Simple Random sampling and Ranked Set Sampling, Asian Journal of Advanced Research and Reports (Accepted Paper) (2020).
  • M. Hanif, U. Shahzad, I. Shahzadi N. Koyuncu, Stochastically Increasing Grouped data Using the MLE of Mean of the Generalized Exponential Distribution, Journal of Organizational Behavior & Analytics 1(1) (2021) 65-82.
  • K. Karakaya, C. Tanış, Different Methods of Estimation for the One Parameter Akash Distribution, Cumhuriyet Science Journal 41(4) (2020) 944-950.
  • C. Tanış, B. Saraçoğlu, On the Record-based Transmuted Model of Balakrishnan and He Based on Weibull Distribution, Communications in Statistics-Simulation and Computation (2020) https://doi.org/10.1080/03610918.2020.1740261
  • K. Karakaya, C. Tanış, Estimating the Parameters of Xgamma Weibull Distribution, Adıyaman University Journal of Science 10(2) (2020) 557-571.
  • C. Tanış, B. Saraçoğlu, C. Kuş, A. Pekgör, K. Karakaya, Transmuted Lower Record Type Fréchet Distribution with Lifetime Regression Analysis Based on Type I-Censored Data, Journal of Statistical Theory and Applications (2021) https://doi.org/10.2991/jsta.d.210115.001
  • M. N. Shahzad, Z. Asghar, Transmuted Power Function Distribution: A More Flexible Distribution, Journal of Statistics and Management Systems 19(4) (2016) 519-539.
  • A. S. Akhter, Methods for Estimating the Parameters of the Power Function Distribution, Pakistan Journal of Statistics and Operation Research (2013) 213-224.
  • M. H. Tahir, M. Alizadeh, M. Mansoor, G. M. Cordeiro, M. Zubair, The Weibull-power Function Distribution with Applications, Hacettepe Journal of Mathematics and Statistics 45(1) (2016) 245-265.
  • I. E. Okorie, A. C. Akpanta, J. Ohakwe, D. C. Chikezie, The Modified Power Function Distribution, Cogent Mathematics 4(1) (2017) https://doi.org/10.1080/23311835.2017.1319592
  • N. Bursa, G. Özel, The Exponentiated Kumaraswamy-power Function Distribution, Hacettepe Journal of Mathematics and Statistics 46(2) (2017) 277-292.
  • A. S. Hassan, S. M. Assar, The Exponentiated Weibull Power Function Distribution, Journal of Data Science 16 (2017) 589-614.
  • M. A. U. Haq, M. Elgarhy, S. Hashmi, G. Ö. Kadiler, Q. U. Ain, Transmuted Weibull Power Function Distribution: its Properties and Applications, Journal of Data Science 16(2) (2018) 397-418.
  • S. İ. Ansari, M. Samuh, A. Bazyari, Cubic Transmuted Power Function Distribution, Gazi University Journal of Science 32(4) (2019) 1322-1337.
  • M. Z. Arshad, M. Z. Iqbal, M. Ahmad, Exponentiated Power Function Distribution: Properties and Applications, Journal of Statistical Theory and Applications 19(2) (2020) 297-313.
  • R. Jabeen, A. Zaka, Percentiles Estimation for The Parameters of Power Function Distribution, Advances and Applications in Statistics 62 (2) (2020) 127-137.
  • R. E. Glaser, Bathtub and Related Failure Rate Characterizations, Journal of the American Statistical Association 75 (371) (1980) 667-672.
  • P. Artzner, Application of Coherent Risk Measures to Capital Requirements in Insurance, North American Actuarial Journal 2(2) (1999) 11-25.
  • A. Z. Afify, A. M. Gemeay, N. A. Ibrahim, The Heavy-tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data, Mathematics 8(8) (2020) 1-28.
  • Z. Landsman, On the Tail Mean-variance Optimal Portfolio Selection, Insurance: Mathematics and Economics 46(3) (2010) 547-553.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences, Applied Mathematics
Journal Section Research Article
Authors

Caner Tanış 0000-0003-0090-1661

Publication Date March 30, 2021
Submission Date February 10, 2021
Published in Issue Year 2021 Issue: 34

Cite

APA Tanış, C. (2021). On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation. Journal of New Theory(34), 72-81.
AMA Tanış C. On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation. JNT. March 2021;(34):72-81.
Chicago Tanış, Caner. “On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation”. Journal of New Theory, no. 34 (March 2021): 72-81.
EndNote Tanış C (March 1, 2021) On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation. Journal of New Theory 34 72–81.
IEEE C. Tanış, “On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation”, JNT, no. 34, pp. 72–81, March 2021.
ISNAD Tanış, Caner. “On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation”. Journal of New Theory 34 (March 2021), 72-81.
JAMA Tanış C. On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation. JNT. 2021;:72–81.
MLA Tanış, Caner. “On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation”. Journal of New Theory, no. 34, 2021, pp. 72-81.
Vancouver Tanış C. On Transmuted Power Function Distribution: Characterization, Risk Measures, and Estimation. JNT. 2021(34):72-81.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).