Research Article
BibTex RIS Cite
Year 2022, Issue: 38, 61 - 69, 31.03.2022
https://doi.org/10.53570/jnt.1073323

Abstract

References

  • H. Abdel-Aziz, M. K. Saad, Computation of Smarandache Curves According to Darboux Frame in Minkowski 3-Space, Journal of the Egyptian Mathematical Society 25(4) (2017) 382–390.
  • A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics 2 (2010) 30–36.
  • O. Bektaş, S. Yüce, Special Smarandache Curves According to Darboux Frame in $E^3$, Romanian Journal of Mathematics and Computer Science 3(1) (2013) 48–59.
  • M. Çetin, Y. Tuncer, M. K. Karacan, Smarandache Curves According to Bishop Frame in Euclidean 3-Space, General Mathematics Notes 20(2) (2014) 50–66.
  • M. Elzawy, S. Mosa, Smarandache Curves in the Galilean 4-Space G4, Journal of the Egyptian Mathematical Society 25(1) (2017) 53–56.
  • T. Kahraman, H. H. Uğurlu, Dual Smarandache Curves and Smarandache Ruled Surfaces, Mathematical Sciences and Applications E-Notes 2(1) (2014) 83–98.
  • E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudohyperbolical Smarandache Curves in Minkowski 3-Space, International Journal of Mathematics and Mathematical Sciences Article ID 658670 (2013) 7 pages.
  • E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudospherical Smarandache Curves in Minkowski 3-Space, Journal of Applied Mathematics Article ID 404521 (2014) 14 pages.
  • M. Mak, H. Altınbas, Spacelike Smarandache Curves of Timelike Curves in Anti de Sitter 3-Space, International Journal of Mathematical Combinatorics 3 (2016) 1–16.
  • U. Ozturk, E. B. Koc Ozturk, Smarandache Curves according to Curves on a Spacelike Surface in Minkowski 3-Space, Journal of Discrete Mathematics Article ID 829581 (2014) 10 pages.
  • U. Ozturk, E. B. Koc Ozturk, K. İlarslan, E. Nešović, On Smarandache Curves Lying in Lightcone in Minkowski 3-Space, Journal of Dynamical Systems and Geometric Theories 12(1) (2014) 81–91.
  • E. Solouma, Special Equiform Smarandache Curves in Minkowski Space-Time, Journal of the Egyptian Mathematical Society 25(3) (2017) 319–325.
  • S. Şenyurt, Y. Altun, C. Cevahir, Smarandache Curves According to Sabban Frame Belonging to Mannheim Curves Pair, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68(1) (2019) 500–513.
  • S. Şenyurt, C. Cevahir, Y. Altun, On the Smarandache Curves of Spatial Quaternionic Involute Curve, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 90(5) (2020) 827–837.
  • S. Şenyurt, A. Çaliskan, U. Çelik, Smarandache Curves of Bertrand Curves Pair According to Frenet Frame, Boletim da Sociedade Paranaense de Matemàtica 39(5) (2021) 163–173.
  • K. Taşköprü, M. Tosun, Smarandache Curves on $S^2$, Boletim da Sociedade Paranaense de Matem´atica 32(1) (2014) 51–59.
  • M. Turgut, S. Yilmaz, Smarandache Curves in Minkowski Space-Time 3 (2008) 51–55.
  • K. Nomizu, N. Katsumi, T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.
  • U. Simon, Affine Differential Geometry, in: Handbook of Differential Geometry, Vol. 1, Elsevier, 2000, pp. 905–961.
  • S. Buchin, Affine Differential Geometry, Gordon and Breach (China), 1983.
  • N. Hu, Affine Geometry of Space Curves and Homogeneous Surfaces, PhD Dissertation, Department of Mathematics Graduate School of Science Hokkaaido University (2012) Japan.
  • L. A. Santalò, A Geometrical Characterization for the Affine Differential Invariants of a Space Curve, Bulletin of the American Mathematical Society 52(8) (1946) 625–632.
  • P. J. Olver, Moving Frames and Differential Invariants in Centro-Affine Geometry, Lobachevskii Journal of Mathematics 31(2) (2010) 77–89.
  • Y. Tunçer, H. Kocayigit, M. K. Karacan, Indicatrices of Curves in Affine 3-Space, Palestine Journal of Mathematics 9(2) (2020) 858–865.
  • Y. Tunçer, H. Kocayigit, M. K. Karacan, Naturel Mates of Equiaffine Space Curves in Affine 3-Space, Thermal Science 23(6) (2019) 2149–2157.
  • Y. Tunçer, Position Vectors of the Curves in Affine 3-Space According to Special Affine Frames, International Journal of Mathematical Combinatorics 2 (2019) 43–59.

On Smarandache Curves in Affine 3-Space

Year 2022, Issue: 38, 61 - 69, 31.03.2022
https://doi.org/10.53570/jnt.1073323

Abstract

In this paper, we introduce Smarandache curves of an affine $C^∞$-curve in affine 3-space. Besides, we present the relationship between the Frenet frames of the curve couple and the Frenet apparatus of each obtained curve.

References

  • H. Abdel-Aziz, M. K. Saad, Computation of Smarandache Curves According to Darboux Frame in Minkowski 3-Space, Journal of the Egyptian Mathematical Society 25(4) (2017) 382–390.
  • A. T. Ali, Special Smarandache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics 2 (2010) 30–36.
  • O. Bektaş, S. Yüce, Special Smarandache Curves According to Darboux Frame in $E^3$, Romanian Journal of Mathematics and Computer Science 3(1) (2013) 48–59.
  • M. Çetin, Y. Tuncer, M. K. Karacan, Smarandache Curves According to Bishop Frame in Euclidean 3-Space, General Mathematics Notes 20(2) (2014) 50–66.
  • M. Elzawy, S. Mosa, Smarandache Curves in the Galilean 4-Space G4, Journal of the Egyptian Mathematical Society 25(1) (2017) 53–56.
  • T. Kahraman, H. H. Uğurlu, Dual Smarandache Curves and Smarandache Ruled Surfaces, Mathematical Sciences and Applications E-Notes 2(1) (2014) 83–98.
  • E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudohyperbolical Smarandache Curves in Minkowski 3-Space, International Journal of Mathematics and Mathematical Sciences Article ID 658670 (2013) 7 pages.
  • E. B. Koc Ozturk, U. Ozturk, K. İlarslan, E. Nešović, On Pseudospherical Smarandache Curves in Minkowski 3-Space, Journal of Applied Mathematics Article ID 404521 (2014) 14 pages.
  • M. Mak, H. Altınbas, Spacelike Smarandache Curves of Timelike Curves in Anti de Sitter 3-Space, International Journal of Mathematical Combinatorics 3 (2016) 1–16.
  • U. Ozturk, E. B. Koc Ozturk, Smarandache Curves according to Curves on a Spacelike Surface in Minkowski 3-Space, Journal of Discrete Mathematics Article ID 829581 (2014) 10 pages.
  • U. Ozturk, E. B. Koc Ozturk, K. İlarslan, E. Nešović, On Smarandache Curves Lying in Lightcone in Minkowski 3-Space, Journal of Dynamical Systems and Geometric Theories 12(1) (2014) 81–91.
  • E. Solouma, Special Equiform Smarandache Curves in Minkowski Space-Time, Journal of the Egyptian Mathematical Society 25(3) (2017) 319–325.
  • S. Şenyurt, Y. Altun, C. Cevahir, Smarandache Curves According to Sabban Frame Belonging to Mannheim Curves Pair, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68(1) (2019) 500–513.
  • S. Şenyurt, C. Cevahir, Y. Altun, On the Smarandache Curves of Spatial Quaternionic Involute Curve, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 90(5) (2020) 827–837.
  • S. Şenyurt, A. Çaliskan, U. Çelik, Smarandache Curves of Bertrand Curves Pair According to Frenet Frame, Boletim da Sociedade Paranaense de Matemàtica 39(5) (2021) 163–173.
  • K. Taşköprü, M. Tosun, Smarandache Curves on $S^2$, Boletim da Sociedade Paranaense de Matem´atica 32(1) (2014) 51–59.
  • M. Turgut, S. Yilmaz, Smarandache Curves in Minkowski Space-Time 3 (2008) 51–55.
  • K. Nomizu, N. Katsumi, T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.
  • U. Simon, Affine Differential Geometry, in: Handbook of Differential Geometry, Vol. 1, Elsevier, 2000, pp. 905–961.
  • S. Buchin, Affine Differential Geometry, Gordon and Breach (China), 1983.
  • N. Hu, Affine Geometry of Space Curves and Homogeneous Surfaces, PhD Dissertation, Department of Mathematics Graduate School of Science Hokkaaido University (2012) Japan.
  • L. A. Santalò, A Geometrical Characterization for the Affine Differential Invariants of a Space Curve, Bulletin of the American Mathematical Society 52(8) (1946) 625–632.
  • P. J. Olver, Moving Frames and Differential Invariants in Centro-Affine Geometry, Lobachevskii Journal of Mathematics 31(2) (2010) 77–89.
  • Y. Tunçer, H. Kocayigit, M. K. Karacan, Indicatrices of Curves in Affine 3-Space, Palestine Journal of Mathematics 9(2) (2020) 858–865.
  • Y. Tunçer, H. Kocayigit, M. K. Karacan, Naturel Mates of Equiaffine Space Curves in Affine 3-Space, Thermal Science 23(6) (2019) 2149–2157.
  • Y. Tunçer, Position Vectors of the Curves in Affine 3-Space According to Special Affine Frames, International Journal of Mathematical Combinatorics 2 (2019) 43–59.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ufuk Öztürk 0000-0002-8800-7869

Burcu Sarıkaya 0000-0002-5866-3144

Pınar Haskul 0000-0002-2191-8449

Ayşegül Emir 0000-0002-7295-4925

Publication Date March 31, 2022
Submission Date February 14, 2022
Published in Issue Year 2022 Issue: 38

Cite

APA Öztürk, U., Sarıkaya, B., Haskul, P., Emir, A. (2022). On Smarandache Curves in Affine 3-Space. Journal of New Theory(38), 61-69. https://doi.org/10.53570/jnt.1073323
AMA Öztürk U, Sarıkaya B, Haskul P, Emir A. On Smarandache Curves in Affine 3-Space. JNT. March 2022;(38):61-69. doi:10.53570/jnt.1073323
Chicago Öztürk, Ufuk, Burcu Sarıkaya, Pınar Haskul, and Ayşegül Emir. “On Smarandache Curves in Affine 3-Space”. Journal of New Theory, no. 38 (March 2022): 61-69. https://doi.org/10.53570/jnt.1073323.
EndNote Öztürk U, Sarıkaya B, Haskul P, Emir A (March 1, 2022) On Smarandache Curves in Affine 3-Space. Journal of New Theory 38 61–69.
IEEE U. Öztürk, B. Sarıkaya, P. Haskul, and A. Emir, “On Smarandache Curves in Affine 3-Space”, JNT, no. 38, pp. 61–69, March 2022, doi: 10.53570/jnt.1073323.
ISNAD Öztürk, Ufuk et al. “On Smarandache Curves in Affine 3-Space”. Journal of New Theory 38 (March 2022), 61-69. https://doi.org/10.53570/jnt.1073323.
JAMA Öztürk U, Sarıkaya B, Haskul P, Emir A. On Smarandache Curves in Affine 3-Space. JNT. 2022;:61–69.
MLA Öztürk, Ufuk et al. “On Smarandache Curves in Affine 3-Space”. Journal of New Theory, no. 38, 2022, pp. 61-69, doi:10.53570/jnt.1073323.
Vancouver Öztürk U, Sarıkaya B, Haskul P, Emir A. On Smarandache Curves in Affine 3-Space. JNT. 2022(38):61-9.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).