Research Article
BibTex RIS Cite

Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes

Year 2022, Issue: 41, 105 - 122, 31.12.2022
https://doi.org/10.53570/jnt.1202341

Abstract

In this study, we worked on the third-order bivariate variant of the Fibonacci universal code and the second-order bivariate variant of the Narayana universal code, depending on two negative integer variables u and v. We then showed in tables these codes for 1≤k≤100, u=-1,-2,…,-20, and v=-2,-3,…,-21 (u and v are consecutive, v$<$u). Moreover, we obtained some significant results from these tables. Furthermore, we compared the use of these codes in cryptography. Finally, we obtained the third-order bivariate variant of Fibonacci codes is more valuable than the second-order bivariate variant of Narayana codes.

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
  • M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly 1 (1963) 71–74.
  • J. H. Thomas, Variations on the Fibonacci Universal Code. arXiv:0701085 (2007).
  • S. Kak, The Golden Mean and the Physics of Aesthetics, in: B. Yadav, M. Mohan (Eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, 2011, pp. 111–119.
  • K. Kirthi, S. Kak, The Narayana Universal Code, arXiv: 1601.07110 (2016).
  • T. Buschmann, L.V. Bystrykh, Levenshtein Error-Correcting Barcodes for Multiplexed DNA Sequencing, BMC Bioinformatics 14 (1) (2013) 272.
  • E. Zeckendorf, Representation Des Nombres Naturels Par Une Somme Des Nombres De Fibonacci Ou De Nombres De Lucas, Bulletin De La Society Royale des Sciences de Liege 41 (1972) 179–182.
  • S. T. Klein, M. K. Ben-Nissan, On the Usefulness of Fibonacci Compression Codes, The Computer Journal 53 (6) (2010) 701–716.
  • M. Basu, B. Prasad, Long Range Variant of Fibonacci Universal Code, Journal of Number Theory 130 (2010) 1925–1931.
  • A. Nallı, Ç. Özyılmaz, The Third order Variations on the Fibonacci Universal Code, Journal of Number Theory 149 (2015) 15–32.
  • D.E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, Journal of London Mathematical Society 35 (1960) 143–160.
  • M. Basu, M. Das, Uses of Second Order Variant Fibonacci Universal Code in Cryptography, Control and Cybernetics 45 (2) (2016) 239–257.
  • M. Das, S. Sinha, A Variant of the Narayana Coding Scheme, Control and Cybernetics 48 (3) (2019) 473–484.
  • C. Çimen, S. Akleylek, E. Akyıldız, Şifrelerin Matematiği Kriptografi, ODTÜ Press Ankara, 2007.
  • D. R. Stinson, Cryptography Theory and Practice, Chapman & Hall, Ohio, CRC Press, 2002.
Year 2022, Issue: 41, 105 - 122, 31.12.2022
https://doi.org/10.53570/jnt.1202341

Abstract

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
  • M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly 1 (1963) 71–74.
  • J. H. Thomas, Variations on the Fibonacci Universal Code. arXiv:0701085 (2007).
  • S. Kak, The Golden Mean and the Physics of Aesthetics, in: B. Yadav, M. Mohan (Eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, 2011, pp. 111–119.
  • K. Kirthi, S. Kak, The Narayana Universal Code, arXiv: 1601.07110 (2016).
  • T. Buschmann, L.V. Bystrykh, Levenshtein Error-Correcting Barcodes for Multiplexed DNA Sequencing, BMC Bioinformatics 14 (1) (2013) 272.
  • E. Zeckendorf, Representation Des Nombres Naturels Par Une Somme Des Nombres De Fibonacci Ou De Nombres De Lucas, Bulletin De La Society Royale des Sciences de Liege 41 (1972) 179–182.
  • S. T. Klein, M. K. Ben-Nissan, On the Usefulness of Fibonacci Compression Codes, The Computer Journal 53 (6) (2010) 701–716.
  • M. Basu, B. Prasad, Long Range Variant of Fibonacci Universal Code, Journal of Number Theory 130 (2010) 1925–1931.
  • A. Nallı, Ç. Özyılmaz, The Third order Variations on the Fibonacci Universal Code, Journal of Number Theory 149 (2015) 15–32.
  • D.E. Daykin, Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, Journal of London Mathematical Society 35 (1960) 143–160.
  • M. Basu, M. Das, Uses of Second Order Variant Fibonacci Universal Code in Cryptography, Control and Cybernetics 45 (2) (2016) 239–257.
  • M. Das, S. Sinha, A Variant of the Narayana Coding Scheme, Control and Cybernetics 48 (3) (2019) 473–484.
  • C. Çimen, S. Akleylek, E. Akyıldız, Şifrelerin Matematiği Kriptografi, ODTÜ Press Ankara, 2007.
  • D. R. Stinson, Cryptography Theory and Practice, Chapman & Hall, Ohio, CRC Press, 2002.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Çağla Çelemoğlu 0000-0003-0572-8132

Publication Date December 31, 2022
Submission Date November 10, 2022
Published in Issue Year 2022 Issue: 41

Cite

APA Çelemoğlu, Ç. (2022). Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. Journal of New Theory(41), 105-122. https://doi.org/10.53570/jnt.1202341
AMA Çelemoğlu Ç. Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. JNT. December 2022;(41):105-122. doi:10.53570/jnt.1202341
Chicago Çelemoğlu, Çağla. “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”. Journal of New Theory, no. 41 (December 2022): 105-22. https://doi.org/10.53570/jnt.1202341.
EndNote Çelemoğlu Ç (December 1, 2022) Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. Journal of New Theory 41 105–122.
IEEE Ç. Çelemoğlu, “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”, JNT, no. 41, pp. 105–122, December 2022, doi: 10.53570/jnt.1202341.
ISNAD Çelemoğlu, Çağla. “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”. Journal of New Theory 41 (December 2022), 105-122. https://doi.org/10.53570/jnt.1202341.
JAMA Çelemoğlu Ç. Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. JNT. 2022;:105–122.
MLA Çelemoğlu, Çağla. “Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes”. Journal of New Theory, no. 41, 2022, pp. 105-22, doi:10.53570/jnt.1202341.
Vancouver Çelemoğlu Ç. Bivariate Variations of Fibonacci and Narayana Sequences and Universal Codes. JNT. 2022(41):105-22.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).