Research Article
BibTex RIS Cite
Year 2025, Issue: 50, 38 - 47, 28.03.2025
https://doi.org/10.53570/jnt.1630419

Abstract

References

  • T. Otsuki, Tangent Bundles of order 2 and general connections, Mathematical Journal of Okayama University 8 (2) (1958) 143--179.
  • T. Otsuki, On tangent bundles of order 2 and affine connections, Proceedings of the Japan Academy 34 (6) (1958) 325--330.
  • T. Otsuki, On general connections I, Mathematical Journal of Okayama University 9 (1960) 99--164.
  • T. Otsuki, On general connections II, Mathematical Journal of Okayama University 10 (1961) 113--124.
  • T. Otsuki, On metric general connections, Proceedings of the Japan Academy 37 (1961) 183--188.
  • Dj. F. Nadj, The Frenet formula of Riemann-Otsuki space, Review of Research Faculty of Science University of Novi Sad Mathematics Series 16 (1) (1986) 95--106.
  • Dj. F. Nadj, The Gauss, Codazzi and Kühne equations of Riemann-Otsuki spaces, Acta Mathematica Hungarica 44 (3-4) (1984) 255--260.
  • A. Moor, Otsukische übertragung mit rekurrentem masstensor, Acta Scientiarum Mathematicarum 40 (1-2) (1978) 129--142.
  • A. Moor, Über die veränderung der länge der vektoren in Weyl-Otsukischen räumen, Acta Scientiarum Mathematicarum 41 (1-2) (1979) 173--185.
  • B. Pirinççi, Congruence of curves in Weyl-Otsuki spaces, Adıyaman University Journal of Science 14 (2) (2024) 123--139.
  • H. A. Hayden, On a generalized helix in a Riemannian $n$-space , Proceedings of the London Mathematical Society s2-32 (1) (1931) 337--345.
  • J. A. Schouten, E. R. van Kampen, Beitrage zur theorie der deformation, Prace Matematyczno-Fizyczne 41 (1) (1934) 1--19.
  • K. Yano, K. Takano, Y. Tomonaga, On infinitesimal deformations of curves in spaces with linear connection, Proceedings of the Japan Academy 22 (10) (1946) 294--309.
  • L. R. Pears, Bertrand curves in Riemannian space, Journal of the London Mathematical Society s1-10 (3) (1935) 180--183.
  • J. Alo, Generalized helices on n-dimensional Riemann-Otsuki space, Beykent University Journal of Science and Engineering, 12 (1) (2019) 6--11.
  • M. Y. Yilmaz, M. Bektaş, General properties of Bertrand curves in Riemann-Otsuki space, Nonlinear Analysis: Theory, Methods and Applications 69 (10) (2008) 3225--3231.
  • Y. Li, A. Uçum, K. İlarslan, Ç. Camcı, A new class of Bertrand curves in Euclidean 4-space, Symmetry 14 (6) (2022) 1191.

Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space

Year 2025, Issue: 50, 38 - 47, 28.03.2025
https://doi.org/10.53570/jnt.1630419

Abstract

In this paper, we extend the classic properties of Bertrand curves in Euclidean 3-space to an $n$-dimensional Riemann-Otsuki space. We introduce the concept of infinitesimal deformations of curves within this space, and by applying the Frenet formulas concerning the contravariant component of the covariant derivative, we derive conditions under which a given deformation of a curve corresponds to a Bertrand curve in this $n$-dimensional space.

References

  • T. Otsuki, Tangent Bundles of order 2 and general connections, Mathematical Journal of Okayama University 8 (2) (1958) 143--179.
  • T. Otsuki, On tangent bundles of order 2 and affine connections, Proceedings of the Japan Academy 34 (6) (1958) 325--330.
  • T. Otsuki, On general connections I, Mathematical Journal of Okayama University 9 (1960) 99--164.
  • T. Otsuki, On general connections II, Mathematical Journal of Okayama University 10 (1961) 113--124.
  • T. Otsuki, On metric general connections, Proceedings of the Japan Academy 37 (1961) 183--188.
  • Dj. F. Nadj, The Frenet formula of Riemann-Otsuki space, Review of Research Faculty of Science University of Novi Sad Mathematics Series 16 (1) (1986) 95--106.
  • Dj. F. Nadj, The Gauss, Codazzi and Kühne equations of Riemann-Otsuki spaces, Acta Mathematica Hungarica 44 (3-4) (1984) 255--260.
  • A. Moor, Otsukische übertragung mit rekurrentem masstensor, Acta Scientiarum Mathematicarum 40 (1-2) (1978) 129--142.
  • A. Moor, Über die veränderung der länge der vektoren in Weyl-Otsukischen räumen, Acta Scientiarum Mathematicarum 41 (1-2) (1979) 173--185.
  • B. Pirinççi, Congruence of curves in Weyl-Otsuki spaces, Adıyaman University Journal of Science 14 (2) (2024) 123--139.
  • H. A. Hayden, On a generalized helix in a Riemannian $n$-space , Proceedings of the London Mathematical Society s2-32 (1) (1931) 337--345.
  • J. A. Schouten, E. R. van Kampen, Beitrage zur theorie der deformation, Prace Matematyczno-Fizyczne 41 (1) (1934) 1--19.
  • K. Yano, K. Takano, Y. Tomonaga, On infinitesimal deformations of curves in spaces with linear connection, Proceedings of the Japan Academy 22 (10) (1946) 294--309.
  • L. R. Pears, Bertrand curves in Riemannian space, Journal of the London Mathematical Society s1-10 (3) (1935) 180--183.
  • J. Alo, Generalized helices on n-dimensional Riemann-Otsuki space, Beykent University Journal of Science and Engineering, 12 (1) (2019) 6--11.
  • M. Y. Yilmaz, M. Bektaş, General properties of Bertrand curves in Riemann-Otsuki space, Nonlinear Analysis: Theory, Methods and Applications 69 (10) (2008) 3225--3231.
  • Y. Li, A. Uçum, K. İlarslan, Ç. Camcı, A new class of Bertrand curves in Euclidean 4-space, Symmetry 14 (6) (2022) 1191.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Jeta Alo 0000-0002-9149-7811

Leyla Zeren Akgün 0009-0006-3101-1548

Publication Date March 28, 2025
Submission Date January 31, 2025
Acceptance Date March 3, 2025
Published in Issue Year 2025 Issue: 50

Cite

APA Alo, J., & Zeren Akgün, L. (2025). Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space. Journal of New Theory(50), 38-47. https://doi.org/10.53570/jnt.1630419
AMA Alo J, Zeren Akgün L. Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space. JNT. March 2025;(50):38-47. doi:10.53570/jnt.1630419
Chicago Alo, Jeta, and Leyla Zeren Akgün. “Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space”. Journal of New Theory, no. 50 (March 2025): 38-47. https://doi.org/10.53570/jnt.1630419.
EndNote Alo J, Zeren Akgün L (March 1, 2025) Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space. Journal of New Theory 50 38–47.
IEEE J. Alo and L. Zeren Akgün, “Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space”, JNT, no. 50, pp. 38–47, March 2025, doi: 10.53570/jnt.1630419.
ISNAD Alo, Jeta - Zeren Akgün, Leyla. “Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space”. Journal of New Theory 50 (March 2025), 38-47. https://doi.org/10.53570/jnt.1630419.
JAMA Alo J, Zeren Akgün L. Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space. JNT. 2025;:38–47.
MLA Alo, Jeta and Leyla Zeren Akgün. “Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space”. Journal of New Theory, no. 50, 2025, pp. 38-47, doi:10.53570/jnt.1630419.
Vancouver Alo J, Zeren Akgün L. Bertrand Curves in $n$-Dimensional Riemann-Otsuki Space. JNT. 2025(50):38-47.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).